About the Project

.从哪可以买世界杯『网址:mxsty.cc』.世界杯球队进球榜.m6q3s2-2022年11月29日21时27分21秒.tzxll3xtj

AdvancedHelp

(0.004 seconds)

31—40 of 156 matching pages

31: 5.22 Tables
For early tables for both real and complex variables see Fletcher et al. (1962), Lebedev and Fedorova (1960), and Luke (1975, p. 21). … Abramowitz and Stegun (1964, Chapter 6) tabulates Γ ( x ) , ln Γ ( x ) , ψ ( x ) , and ψ ( x ) for x = 1 ( .005 ) 2 to 10D; ψ ′′ ( x ) and ψ ( 3 ) ( x ) for x = 1 ( .01 ) 2 to 10D; Γ ( n ) , 1 / Γ ( n ) , Γ ( n + 1 2 ) , ψ ( n ) , log 10 Γ ( n ) , log 10 Γ ( n + 1 3 ) , log 10 Γ ( n + 1 2 ) , and log 10 Γ ( n + 2 3 ) for n = 1 ( 1 ) 101 to 8–11S; Γ ( n + 1 ) for n = 100 ( 100 ) 1000 to 20S. …
32: 34.1 Special Notation
{ j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } .
33: Bibliography O
  • A. B. Olde Daalhuis (1998a) Hyperasymptotic solutions of higher order linear differential equations with a singularity of rank one. Proc. Roy. Soc. London Ser. A 454, pp. 1–29.
  • F. W. J. Olver (1974) Error bounds for stationary phase approximations. SIAM J. Math. Anal. 5 (1), pp. 19–29.
  • S. Olver (2011) Numerical solution of Riemann-Hilbert problems: Painlevé II. Found. Comput. Math. 11 (2), pp. 153–179.
  • H. Oser (1960) Algorithm 22: Riccati-Bessel functions of first and second kind. Comm. ACM 3 (11), pp. 600–601.
  • 34: 34.9 Graphical Method
    For specific examples of the graphical method of representing sums involving the 3 j , 6 j , and 9 j symbols, see Varshalovich et al. (1988, Chapters 11, 12) and Lehman and O’Connell (1973, §3.3).
    35: Richard B. Paris
    36: 26.3 Lattice Paths: Binomial Coefficients
    Table 26.3.1: Binomial coefficients ( m n ) .
    m n
    7 1 7 21 35 35 21 7 1
    Table 26.3.2: Binomial coefficients ( m + n m ) for lattice paths.
    m n
    2 1 3 6 10 15 21 28 36 45
    5 1 6 21 56 126 252 462 792 1287
    37: 26.14 Permutations: Order Notation
    Equivalently, this is the sum over 1 j < n of the number of integers less than σ ( j ) that lie in positions to the right of the j th position: inv ( 35247816 ) = 2 + 3 + 1 + 1 + 2 + 2 + 0 = 11 .
    Table 26.14.1: Eulerian numbers n k .
    n k
    4 1 11 11 1
    38: 25.20 Approximations
  • Cody et al. (1971) gives rational approximations for ζ ( s ) in the form of quotients of polynomials or quotients of Chebyshev series. The ranges covered are 0.5 s 5 , 5 s 11 , 11 s 25 , 25 s 55 . Precision is varied, with a maximum of 20S.

  • 39: 24.20 Tables
    For information on tables published before 1961 see Fletcher et al. (1962, v. 1, §4) and Lebedev and Fedorova (1960, Chapters 11 and 14).
    40: 26.13 Permutations: Cycle Notation
    Again, for the example (26.13.2) a minimal decomposition into adjacent transpositions is given by ( 1 , 3 , 2 , 5 , 7 ) ( 6 , 8 ) = ( 2 , 3 ) ( 1 , 2 ) ( 4 , 5 ) ( 3 , 4 ) ( 2 , 3 ) ( 3 , 4 ) ( 4 , 5 ) ( 6 , 7 ) ( 5 , 6 ) ( 7 , 8 ) ( 6 , 7 ) : inv ( ( 1 , 3 , 2 , 5 , 7 ) ( 6 , 8 ) ) = 11 .