About the Project

theta%20functions

AdvancedHelp

(0.005 seconds)

21—30 of 31 matching pages

21: Bibliography W
  • E. L. Wachspress (2000) Evaluating elliptic functions and their inverses. Comput. Math. Appl. 39 (3-4), pp. 131–136.
  • P. L. Walker (1991) Infinitely differentiable generalized logarithmic and exponential functions. Math. Comp. 57 (196), pp. 723–733.
  • P. L. Walker (2012) Reduction formulae for products of theta functions. J. Res. Nat. Inst. Standards and Technology 117, pp. 297–303.
  • R. S. Ward (1987) The Nahm equations, finite-gap potentials and Lamé functions. J. Phys. A 20 (10), pp. 2679–2683.
  • G. N. Watson (1910) The cubic transformation of the hypergeometric function. Quart. J. Pure and Applied Math. 41, pp. 70–79.
  • 22: Bibliography D
  • C. de la Vallée Poussin (1896b) Recherches analytiques sur la théorie des nombres premiers. Deuxième partie. Les fonctions de Dirichlet et les nombres premiers de la forme linéaire M x + N . Ann. Soc. Sci. Bruxelles 20, pp. 281–397 (French).
  • B. Deconinck, M. Heil, A. Bobenko, M. van Hoeij, and M. Schmies (2004) Computing Riemann theta functions. Math. Comp. 73 (247), pp. 1417–1442.
  • B. Döring (1966) Complex zeros of cylinder functions. Math. Comp. 20 (94), pp. 215–222.
  • B. A. Dubrovin (1981) Theta functions and non-linear equations. Uspekhi Mat. Nauk 36 (2(218)), pp. 11–80 (Russian).
  • T. M. Dunster (1989) Uniform asymptotic expansions for Whittaker’s confluent hypergeometric functions. SIAM J. Math. Anal. 20 (3), pp. 744–760.
  • 23: 9.9 Zeros
    §9.9(ii) Relation to Modulus and Phase
    §9.9(iii) Derivatives With Respect to k
    §9.9(iv) Asymptotic Expansions
    §9.9(v) Tables
    Tables 9.9.1 and 9.9.2 give 10D values of the first ten real zeros of Ai , Ai , Bi , Bi , together with the associated values of the derivative or the function. …
    24: 28.1 Special Notation
    (For other notation see Notation for the Special Functions.) … The main functions treated in this chapter are the Mathieu functions …and the modified Mathieu functionsAlternative notations for the functions are as follows. …
    Abramowitz and Stegun (1964, Chapter 20)
    25: 3.4 Differentiation
    §3.4(ii) Analytic Functions
    3.4.19 1 k ! = 1 2 π r k 0 2 π e r cos θ cos ( r sin θ k θ ) d θ .
    With the choice r = k (which is crucial when k is large because of numerical cancellation) the integrand equals e k at the dominant points θ = 0 , 2 π , and in combination with the factor k k in front of the integral sign this gives a rough approximation to 1 / k ! . …
    3.4.33 4 u 0 , 0 = 1 h 4 ( 20 u 0 , 0 8 ( u 1 , 0 + u 0 , 1 + u 1 , 0 + u 0 , 1 ) + 2 ( u 1 , 1 + u 1 , 1 + u 1 , 1 + u 1 , 1 ) + ( u 0 , 2 + u 2 , 0 + u 2 , 0 + u 0 , 2 ) ) + O ( h 2 ) ,
    26: Bibliography I
  • J. Igusa (1972) Theta Functions. Springer-Verlag, New York.
  • Y. Ikebe, Y. Kikuchi, and I. Fujishiro (1991) Computing zeros and orders of Bessel functions. J. Comput. Appl. Math. 38 (1-3), pp. 169–184.
  • E. L. Ince (1932) Tables of the elliptic cylinder functions. Proc. Roy. Soc. Edinburgh Sect. A 52, pp. 355–433.
  • E. L. Ince (1940a) The periodic Lamé functions. Proc. Roy. Soc. Edinburgh 60, pp. 47–63.
  • K. Inkeri (1959) The real roots of Bernoulli polynomials. Ann. Univ. Turku. Ser. A I 37, pp. 1–20.
  • 27: 10.3 Graphics
    §10.3 Graphics
    §10.3(i) Real Order and Variable
    For the modulus and phase functions M ν ( x ) , θ ν ( x ) , N ν ( x ) , and ϕ ν ( x ) see §10.18. …
    §10.3(ii) Real Order, Complex Variable
    §10.3(iii) Imaginary Order, Real Variable
    28: Errata
  • Subsection 19.11(i)

    A sentence and unnumbered equation

    R C ( γ δ , γ ) = 1 δ arctan ( δ sin θ sin ϕ sin ψ α 2 1 α 2 cos θ cos ϕ cos ψ ) ,

    were added which indicate that care must be taken with the multivalued functions in (19.11.5). See (Cayley, 1961, pp. 103-106).

    Suggested by Albert Groenenboom.

  • Equation (22.19.2)
    22.19.2 sin ( 1 2 θ ( t ) ) = sin ( 1 2 α ) sn ( t + K , sin ( 1 2 α ) )

    Originally the first argument to the function sn was given incorrectly as t . The correct argument is t + K .

    Reported 2014-03-05 by Svante Janson.

  • Equation (22.19.3)
    22.19.3 θ ( t ) = 2 am ( t E / 2 , 2 / E )

    Originally the first argument to the function am was given incorrectly as t . The correct argument is t E / 2 .

    Reported 2014-03-05 by Svante Janson.

  • Chapters 8, 20, 36

    Several new equations have been added. See (8.17.24), (20.7.34), §20.11(v), (26.12.27), (36.2.28), and (36.2.29).

  • References

    Bibliographic citations were added in §§1.13(v), 10.14, 10.21(ii), 18.15(v), 18.32, 30.16(iii), 32.13(ii), and as general references in Chapters 19, 20, 22, and 23.

  • 29: Bibliography K
  • R. B. Kearfott, M. Dawande, K. Du, and C. Hu (1994) Algorithm 737: INTLIB: A portable Fortran 77 interval standard-function library. ACM Trans. Math. Software 20 (4), pp. 447–459.
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • A. V. Kitaev and A. H. Vartanian (2004) Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I. Inverse Problems 20 (4), pp. 1165–1206.
  • S. Koizumi (1976) Theta relations and projective normality of Abelian varieties. Amer. J. Math. 98 (4), pp. 865–889.
  • T. H. Koornwinder (2009) The Askey scheme as a four-manifold with corners. Ramanujan J. 20 (3), pp. 409–439.
  • 30: 18.5 Explicit Representations
    §18.5(i) Trigonometric Functions
    With x = cos θ = 1 2 ( z + z 1 ) , …
    §18.5(iii) Finite Power Series, the Hypergeometric Function, and Generalized Hypergeometric Functions
    Laguerre
    Hermite