About the Project

stationary solutions

AdvancedHelp

(0.002 seconds)

7 matching pages

1: 18.39 Applications in the Physical Sciences
The solutions (18.39.8) are called the stationary states as separation of variables in (18.39.9) yields solutions of form …
2: Bibliography C
  • L. D. Carr, C. W. Clark, and W. P. Reinhardt (2000) Stationary solutions of the one-dimensional nonlinear Schrödinger equation. I. Case of repulsive nonlinearity. Phys. Rev. A 62 (063610), pp. 1–10.
  • 3: 22.19 Physical Applications
    Such solutions include standing or stationary waves, periodic cnoidal waves, and single and multi-solitons occurring in diverse physical situations such as water waves, optical pulses, quantum fluids, and electrical impulses (Hasegawa (1989), Carr et al. (2000), Kivshar and Luther-Davies (1998), and Boyd (1998, Appendix D2.2)). …
    4: Bibliography O
  • A. B. Olde Daalhuis and F. W. J. Olver (1995a) Hyperasymptotic solutions of second-order linear differential equations. I. Methods Appl. Anal. 2 (2), pp. 173–197.
  • A. B. Olde Daalhuis and F. W. J. Olver (1998) On the asymptotic and numerical solution of linear ordinary differential equations. SIAM Rev. 40 (3), pp. 463–495.
  • F. W. J. Olver (1974) Error bounds for stationary phase approximations. SIAM J. Math. Anal. 5 (1), pp. 19–29.
  • S. Olver (2011) Numerical solution of Riemann-Hilbert problems: Painlevé II. Found. Comput. Math. 11 (2), pp. 153–179.
  • A. M. Ostrowski (1973) Solution of Equations in Euclidean and Banach Spaces. Pure and Applied Mathematics, Vol. 9, Academic Press, New York-London.
  • 5: 36.11 Leading-Order Asymptotics
    36.11.1 t 1 ( 𝐱 ) < t 2 ( 𝐱 ) < < t j max ( 𝐱 ) ,
    36.11.2 Ψ K ( 𝐱 ) = 2 π j = 1 j max ( 𝐱 ) exp ( i ( Φ K ( t j ( 𝐱 ) ; 𝐱 ) + 1 4 π ( 1 ) j + K + 1 ) ) | 2 Φ K ( t j ( 𝐱 ) ; 𝐱 ) t 2 | 1 / 2 ( 1 + o ( 1 ) ) .
    6: Bibliography B
  • W. G. Bickley (1935) Some solutions of the problem of forced convection. Philos. Mag. Series 7 20, pp. 322–343.
  • N. Bleistein (1966) Uniform asymptotic expansions of integrals with stationary point near algebraic singularity. Comm. Pure Appl. Math. 19, pp. 353–370.
  • N. Bleistein (1967) Uniform asymptotic expansions of integrals with many nearby stationary points and algebraic singularities. J. Math. Mech. 17, pp. 533–559.
  • P. Boalch (2006) The fifty-two icosahedral solutions to Painlevé VI. J. Reine Angew. Math. 596, pp. 183–214.
  • C. Brezinski (1999) Error estimates for the solution of linear systems. SIAM J. Sci. Comput. 21 (2), pp. 764–781.
  • 7: 36.7 Zeros
    where ξ n is the real solution of … The zeros are approximated by solutions of the equation …