About the Project

spherical trigonometry

AdvancedHelp

(0.001 seconds)

11—20 of 85 matching pages

11: 10.60 Sums
§10.60 Sums
§10.60(i) Addition Theorems
§10.60(ii) Duplication Formulas
For further sums of series of spherical Bessel functions, or modified spherical Bessel functions, see §6.10(ii), Luke (1969b, pp. 55–58), Vavreck and Thompson (1984), Harris (2000), and Rottbrand (2000).
§10.60(iv) Compendia
12: Bibliography H
  • F. E. Harris (2000) Spherical Bessel expansions of sine, cosine, and exponential integrals. Appl. Numer. Math. 34 (1), pp. 95–98.
  • E. W. Hobson (1928) A Treatise on Plane and Advanced Trigonometry. 7th edition, Cambridge University Press.
  • E. W. Hobson (1931) The Theory of Spherical and Ellipsoidal Harmonics. Cambridge University Press, London-New York.
  • 13: 10.51 Recurrence Relations and Derivatives
    Let f n ( z ) denote any of 𝗃 n ( z ) , 𝗒 n ( z ) , 𝗁 n ( 1 ) ( z ) , or 𝗁 n ( 2 ) ( z ) . …
    n f n 1 ( z ) ( n + 1 ) f n + 1 ( z ) = ( 2 n + 1 ) f n ( z ) , n = 1 , 2 , ,
    f n ( z ) = f n + 1 ( z ) + ( n / z ) f n ( z ) , n = 0 , 1 , .
    Let g n ( z ) denote 𝗂 n ( 1 ) ( z ) , 𝗂 n ( 2 ) ( z ) , or ( 1 ) n 𝗄 n ( z ) . Then …
    14: 10.57 Uniform Asymptotic Expansions for Large Order
    §10.57 Uniform Asymptotic Expansions for Large Order
    Asymptotic expansions for 𝗃 n ( ( n + 1 2 ) z ) , 𝗒 n ( ( n + 1 2 ) z ) , 𝗁 n ( 1 ) ( ( n + 1 2 ) z ) , 𝗁 n ( 2 ) ( ( n + 1 2 ) z ) , 𝗂 n ( 1 ) ( ( n + 1 2 ) z ) , and 𝗄 n ( ( n + 1 2 ) z ) as n that are uniform with respect to z can be obtained from the results given in §§10.20 and 10.41 by use of the definitions (10.47.3)–(10.47.7) and (10.47.9). Subsequently, for 𝗂 n ( 2 ) ( ( n + 1 2 ) z ) the connection formula (10.47.11) is available. For the corresponding expansion for 𝗃 n ( ( n + 1 2 ) z ) use
    10.57.1 𝗃 n ( ( n + 1 2 ) z ) = π 1 2 ( ( 2 n + 1 ) z ) 1 2 J n + 1 2 ( ( n + 1 2 ) z ) π 1 2 ( ( 2 n + 1 ) z ) 3 2 J n + 1 2 ( ( n + 1 2 ) z ) .
    15: 10.58 Zeros
    §10.58 Zeros
    For n 0 the m th positive zeros of 𝗃 n ( x ) , 𝗃 n ( x ) , 𝗒 n ( x ) , and 𝗒 n ( x ) are denoted by a n , m , a n , m , b n , m , and b n , m , respectively, except that for n = 0 we count x = 0 as the first zero of 𝗃 0 ( x ) . …
    𝗃 n ( a n , m ) = π 2 j n + 1 2 , m J n + 1 2 ( j n + 1 2 , m ) ,
    𝗒 n ( b n , m ) = π 2 y n + 1 2 , m Y n + 1 2 ( y n + 1 2 , m ) .
    16: 10.1 Special Notation
    The main functions treated in this chapter are the Bessel functions J ν ( z ) , Y ν ( z ) ; Hankel functions H ν ( 1 ) ( z ) , H ν ( 2 ) ( z ) ; modified Bessel functions I ν ( z ) , K ν ( z ) ; spherical Bessel functions 𝗃 n ( z ) , 𝗒 n ( z ) , 𝗁 n ( 1 ) ( z ) , 𝗁 n ( 2 ) ( z ) ; modified spherical Bessel functions 𝗂 n ( 1 ) ( z ) , 𝗂 n ( 2 ) ( z ) , 𝗄 n ( z ) ; Kelvin functions ber ν ( x ) , bei ν ( x ) , ker ν ( x ) , kei ν ( x ) . For the spherical Bessel functions and modified spherical Bessel functions the order n is a nonnegative integer. … Abramowitz and Stegun (1964): j n ( z ) , y n ( z ) , h n ( 1 ) ( z ) , h n ( 2 ) ( z ) , for 𝗃 n ( z ) , 𝗒 n ( z ) , 𝗁 n ( 1 ) ( z ) , 𝗁 n ( 2 ) ( z ) , respectively, when n 0 . … For older notations see British Association for the Advancement of Science (1937, pp. xix–xx) and Watson (1944, Chapters 1–3).
    17: 10.54 Integral Representations
    §10.54 Integral Representations
    𝗁 n ( 1 ) ( z ) = ( i ) n + 1 π i ( 1 + ) e i z t Q n ( t ) d t ,
    For the Legendre polynomial P n and the associated Legendre function Q n see §§18.3 and 14.21(i), with μ = 0 and ν = n . …
    18: 6.10 Other Series Expansions
    §6.10(ii) Expansions in Series of Spherical Bessel Functions
    6.10.4 Si ( z ) = z n = 0 ( 𝗃 n ( 1 2 z ) ) 2 ,
    6.10.5 Cin ( z ) = n = 1 a n ( 𝗃 n ( 1 2 z ) ) 2 ,
    6.10.6 Ei ( x ) = γ + ln | x | + n = 0 ( 1 ) n ( x a n ) ( 𝗂 n ( 1 ) ( 1 2 x ) ) 2 , x 0 ,
    6.10.8 Ein ( z ) = z e z / 2 ( 𝗂 0 ( 1 ) ( 1 2 z ) + n = 1 2 n + 1 n ( n + 1 ) 𝗂 n ( 1 ) ( 1 2 z ) ) .
    19: 10.73 Physical Applications
    §10.73(ii) Spherical Bessel Functions
    The functions 𝗃 n ( x ) , 𝗒 n ( x ) , 𝗁 n ( 1 ) ( x ) , and 𝗁 n ( 2 ) ( x ) arise in the solution (again by separation of variables) of the Helmholtz equation in spherical coordinates ρ , θ , ϕ 1.5(ii)): …With the spherical harmonic Y , m ( θ , ϕ ) defined as in §14.30(i), the solutions are of the form f = g ( k ρ ) Y , m ( θ , ϕ ) with g = 𝗃 , 𝗒 , 𝗁 ( 1 ) , or 𝗁 ( 2 ) , depending on the boundary conditions. Accordingly, the spherical Bessel functions appear in all problems in three dimensions with spherical symmetry involving the scattering of electromagnetic radiation. …
    20: 10.59 Integrals
    §10.59 Integrals
    10.59.1 e i b t 𝗃 n ( t ) d t = { π i n P n ( b ) , 1 < b < 1 , 1 2 π ( ± i ) n , b = ± 1 , 0 , ± b > 1 ,
    where P n is the Legendre polynomial (§18.3). For an integral representation of the Dirac delta in terms of a product of spherical Bessel functions of the first kind see §1.17(ii), and for a generalization see Maximon (1991). …