About the Project

spectral solutions

AdvancedHelp

(0.002 seconds)

1—10 of 20 matching pages

1: 18.38 Mathematical Applications
Differential Equations: Spectral Methods
Quadrature “Extended” to Pseudo-Spectral (DVR) Representations of Operators in One and Many Dimensions
2: Bibliography
  • J. C. Adams and P. N. Swarztrauber (1997) SPHEREPACK 2.0: A Model Development Facility. NCAR Technical Note Technical Report TN-436-STR, National Center for Atmospheric Research.
  • 3: 31.17 Physical Applications
    §31.17(i) Addition of Three Quantum Spins
    The problem of adding three quantum spins 𝐬 , 𝐭 , and 𝐮 can be solved by the method of separation of variables, and the solution is given in terms of a product of two Heun functions. … Consider the following spectral problem on the sphere S 2 : 𝐱 2 = x s 2 + x t 2 + x u 2 = R 2 . … Heun functions appear in the theory of black holes (Kerr (1963), Teukolsky (1972), Chandrasekhar (1984), Suzuki et al. (1998), Kalnins et al. (2000)), lattice systems in statistical mechanics (Joyce (1973, 1994)), dislocation theory (Lay and Slavyanov (1999)), and solution of the Schrödinger equation of quantum mechanics (Bay et al. (1997), Tolstikhin and Matsuzawa (2001), and Hall et al. (2010)). For applications of Heun’s equation and functions in astrophysics see Debosscher (1998) where different spectral problems for Heun’s equation are also considered. …
    4: Daniel W. Lozier
    Army Engineer Research and Development Laboratory in Virginia on finite-difference solutions of differential equations associated with nuclear weapons effects. Then he transferred to NIST (then known as the National Bureau of Standards), where he collaborated for several years with the Building and Fire Research Laboratory developing and applying finite-difference and spectral methods to differential equation models of fire growth. …
    5: Bibliography O
  • A. B. Olde Daalhuis and F. W. J. Olver (1995a) Hyperasymptotic solutions of second-order linear differential equations. I. Methods Appl. Anal. 2 (2), pp. 173–197.
  • A. B. Olde Daalhuis and F. W. J. Olver (1998) On the asymptotic and numerical solution of linear ordinary differential equations. SIAM Rev. 40 (3), pp. 463–495.
  • S. Olver (2011) Numerical solution of Riemann-Hilbert problems: Painlevé II. Found. Comput. Math. 11 (2), pp. 153–179.
  • G. E. Ordóñez and D. J. Driebe (1996) Spectral decomposition of tent maps using symmetry considerations. J. Statist. Phys. 84 (1-2), pp. 269–276.
  • A. M. Ostrowski (1973) Solution of Equations in Euclidean and Banach Spaces. Pure and Applied Mathematics, Vol. 9, Academic Press, New York-London.
  • 6: Bibliography L
  • R. E. Langer (1934) The solutions of the Mathieu equation with a complex variable and at least one parameter large. Trans. Amer. Math. Soc. 36 (3), pp. 637–695.
  • L. Lapointe and L. Vinet (1996) Exact operator solution of the Calogero-Sutherland model. Comm. Math. Phys. 178 (2), pp. 425–452.
  • B. M. Levitan and I. S. Sargsjan (1975) Introduction to spectral theory: selfadjoint ordinary differential operators. Translations of Mathematical Monographs, Vol. 39, American Mathematical Society, Providence, R.I..
  • C. Liaw, L. L. Littlejohn, R. Milson, and J. Stewart (2016) The spectral analysis of three families of exceptional Laguerre polynomials. J. Approx. Theory 202, pp. 5–41.
  • R. J. Lyman and W. W. Edmonson (2001) Linear prediction of bandlimited processes with flat spectral densities. IEEE Trans. Signal Process. 49 (7), pp. 1564–1569.
  • 7: 31.8 Solutions via Quadratures
    §31.8 Solutions via Quadratures
    are two independent solutions of (31.2.1). …The variables λ and ν are two coordinates of the associated hyperelliptic (spectral) curve Γ : ν 2 = j = 1 2 g + 1 ( λ λ j ) . … For more details see Smirnov (2002). The solutions in this section are finite-term Liouvillean solutions which can be constructed via Kovacic’s algorithm; see §31.14(ii).
    8: 30.13 Wave Equation in Prolate Spheroidal Coordinates
    transformed to prolate spheroidal coordinates ( ξ , η , ϕ ) , admits solutions …where w 1 , w 2 , w 3 satisfy the differential equations … The solution of (30.13.9) with μ = m is … If b 1 = b 2 = 0 , then the function (30.13.8) is a twice-continuously differentiable solution of (30.13.7) in the entire ( x , y , z ) -space. … Equation (30.13.7) for ξ ξ 0 , and subject to the boundary condition w = 0 on the ellipsoid given by ξ = ξ 0 , poses an eigenvalue problem with κ 2 as spectral parameter. …
    9: 30.14 Wave Equation in Oblate Spheroidal Coordinates
    The wave equation (30.13.7), transformed to oblate spheroidal coordinates ( ξ , η , ϕ ) , admits solutions of the form (30.13.8), where w 1 satisfies the differential equation … In most applications the solution w has to be a single-valued function of ( x , y , z ) , which requires μ = m (a nonnegative integer). …The solution of (30.14.7) is given by … If b 1 = b 2 = 0 , then the function (30.13.8) is a twice-continuously differentiable solution of (30.13.7) in the entire ( x , y , z ) -space. … Equation (30.13.7) for ξ ξ 0 together with the boundary condition w = 0 on the ellipsoid given by ξ = ξ 0 , poses an eigenvalue problem with κ 2 as spectral parameter. …
    10: Bibliography S
  • B. Shizgal (2015) Spectral Methods in Chemistry and Physics. Applications to Kinetic Theory and Quantum Mechanics. Scientific Computation, Springer-Verlag, Dordrecht.
  • B. Simon (2005b) Orthogonal Polynomials on the Unit Circle. Part 2: Spectral Theory. American Mathematical Society Colloquium Publications, Vol. 54, American Mathematical Society, Providence, RI.
  • B. Simon (2011) Szegő’s Theorem and Its Descendants. Spectral Theory for L 2 Perturbations of Orthogonal Polynomials. M. B. Porter Lectures, Princeton University Press, Princeton, NJ.
  • B. D. Sleeman (1978) Multiparameter spectral theory in Hilbert space. Research Notes in Mathematics, Vol. 22, Pitman (Advanced Publishing Program), Boston, Mass.-London.
  • R. Spigler (1984) The linear differential equation whose solutions are the products of solutions of two given differential equations. J. Math. Anal. Appl. 98 (1), pp. 130–147.