About the Project

removable%20singularity

AdvancedHelp

(0.002 seconds)

11—20 of 196 matching pages

11: 25.2 Definition and Expansions
It is a meromorphic function whose only singularity in is a simple pole at s = 1 , with residue 1. …
25.2.4 ζ ( s ) = 1 s 1 + n = 0 ( 1 ) n n ! γ n ( s 1 ) n ,
12: Errata
  • Subsection 14.3(iv)

    A sentence was added at the end of this subsection indicating that from (15.9.15), it follows that 1 2 μ = 0 , 1 , 2 , and ν + μ + 1 = 0 , 1 , 2 , are removable singularities.

  • Equation (5.11.14)

    The previous constraint ( b a ) > 0 was removed, see Fields (1966, (3)).

  • Section 36.1 Special Notation

    The entry for to represent complex conjugation was removed (see Version 1.0.19).

  • Equation (25.2.4)

    The original constraint, s > 0 , was removed because, as stated after (25.2.1), ζ ( s ) is meromorphic with a simple pole at s = 1 , and therefore ζ ( s ) ( s 1 ) 1 is an entire function.

    Suggested by John Harper.

  • References

    Bibliographic citations and clarifications have been added, removed, or modified in §§5.6(i), 5.10, 7.8, 7.25(iii), and 32.16.

  • 13: 11.6 Asymptotic Expansions
    c 3 ( λ ) = 20 λ 6 4 λ 4 ,
    14: 5.10 Continued Fractions
    15: Bibliography O
  • A. B. Olde Daalhuis and F. W. J. Olver (1994) Exponentially improved asymptotic solutions of ordinary differential equations. II Irregular singularities of rank one. Proc. Roy. Soc. London Ser. A 445, pp. 39–56.
  • A. B. Olde Daalhuis (1998a) Hyperasymptotic solutions of higher order linear differential equations with a singularity of rank one. Proc. Roy. Soc. London Ser. A 454, pp. 1–29.
  • F. W. J. Olver and F. Stenger (1965) Error bounds for asymptotic solutions of second-order differential equations having an irregular singularity of arbitrary rank. J. Soc. Indust. Appl. Math. Ser. B Numer. Anal. 2 (2), pp. 244–249.
  • F. W. J. Olver (1965) On the asymptotic solution of second-order differential equations having an irregular singularity of rank one, with an application to Whittaker functions. J. Soc. Indust. Appl. Math. Ser. B Numer. Anal. 2 (2), pp. 225–243.
  • F. W. J. Olver (1997a) Asymptotic solutions of linear ordinary differential equations at an irregular singularity of rank unity. Methods Appl. Anal. 4 (4), pp. 375–403.
  • 16: 14.3 Definitions and Hypergeometric Representations
    From (15.9.15) it follows that 1 2 μ = 0 , 1 , 2 , and ν + μ + 1 = 0 , 1 , 2 , are removable singularities of the right-hand sides of (14.3.21) and (14.3.22).
    17: Bibliography
  • A. R. Ahmadi and S. E. Widnall (1985) Unsteady lifting-line theory as a singular-perturbation problem. J. Fluid Mech 153, pp. 59–81.
  • H. H. Aly, H. J. W. Müller-Kirsten, and N. Vahedi-Faridi (1975) Scattering by singular potentials with a perturbation – Theoretical introduction to Mathieu functions. J. Mathematical Phys. 16, pp. 961–970.
  • V. I. Arnol’d, S. M. Guseĭn-Zade, and A. N. Varchenko (1988) Singularities of Differentiable Maps. Vol. II. Birkhäuser, Boston-Berlin.
  • V. I. Arnol’d (1972) Normal forms of functions near degenerate critical points, the Weyl groups A k , D k , E k and Lagrangian singularities. Funkcional. Anal. i Priložen. 6 (4), pp. 3–25 (Russian).
  • J. Avron and B. Simon (1982) Singular Continuous Spectrum for a Class of Almost Periodic Jacobi Matrices. Bulletin of the American Mathematical Society 6 (1), pp. 81–85.
  • 18: 17.5 ϕ 0 0 , ϕ 0 1 , ϕ 1 1 Functions
    17.5.1 ϕ 0 0 ( ; ; q , z ) = n = 0 ( 1 ) n q ( n 2 ) z n ( q ; q ) n = ( z ; q ) ;
    17.5.5 ϕ 1 1 ( a c ; q , c / a ) = ( c / a ; q ) ( c ; q ) .
    19: Bibliography F
  • FDLIBM (free C library)
  • S. Fempl (1960) Sur certaines sommes des intégral-cosinus. Bull. Soc. Math. Phys. Serbie 12, pp. 13–20 (French).
  • F. Feuillebois (1991) Numerical calculation of singular integrals related to Hankel transform. Comput. Math. Appl. 21 (2-3), pp. 87–94.
  • P. Flajolet and A. Odlyzko (1990) Singularity analysis of generating functions. SIAM J. Discrete Math. 3 (2), pp. 216–240.
  • G. Freud (1969) On weighted polynomial approximation on the whole real axis. Acta Math. Acad. Sci. Hungar. 20, pp. 223–225.
  • 20: 31.12 Confluent Forms of Heun’s Equation
    Confluent forms of Heun’s differential equation (31.2.1) arise when two or more of the regular singularities merge to form an irregular singularity. … This has regular singularities at z = 0 and 1 , and an irregular singularity of rank 1 at z = . … This has irregular singularities at z = 0 and , each of rank 1 . … This has a regular singularity at z = 0 , and an irregular singularity at of rank 2 . … This has one singularity, an irregular singularity of rank 3 at z = . …