About the Project

relations%20to%20Dawson%20integral%20and%20exponential%20integral

AdvancedHelp

(0.005 seconds)

21—30 of 620 matching pages

21: 36 Integrals with Coalescing Saddles
Chapter 36 Integrals with Coalescing Saddles
22: 7.8 Inequalities
7.8.5 x 2 2 x 2 + 1 x 2 ( 2 x 2 + 5 ) 4 x 4 + 12 x 2 + 3 x 𝖬 ( x ) < 2 x 4 + 9 x 2 + 4 4 x 4 + 20 x 2 + 15 < x 2 + 1 2 x 2 + 3 , x 0 .
7.8.6 0 x e a t 2 d t < 1 3 a x ( 2 e a x 2 + a x 2 2 ) , a , x > 0 .
7.8.7 sinh x 2 x < e x 2 F ( x ) = 0 x e t 2 d t < e x 2 1 x , x > 0 .
The function F ( x ) / 1 e 2 x 2 is strictly decreasing for x > 0 . For these and similar results for Dawson’s integral F ( x ) see Janssen (2021). …
23: 7.23 Tables
  • Abramowitz and Stegun (1964, Chapter 7) includes erf x , ( 2 / π ) e x 2 , x [ 0 , 2 ] , 10D; ( 2 / π ) e x 2 , x [ 2 , 10 ] , 8S; x e x 2 erfc x , x 2 [ 0 , 0.25 ] , 7D; 2 n Γ ( 1 2 n + 1 ) i n erfc ( x ) , n = 1 ( 1 ) 6 , 10 , 11 , x [ 0 , 5 ] , 6S; F ( x ) , x [ 0 , 2 ] , 10D; x F ( x ) , x 2 [ 0 , 0.25 ] , 9D; C ( x ) , S ( x ) , x [ 0 , 5 ] , 7D; f ( x ) , g ( x ) , x [ 0 , 1 ] , x 1 [ 0 , 1 ] , 15D.

  • Abramowitz and Stegun (1964, Table 27.6) includes the Goodwin–Staton integral G ( x ) , x = 1 ( .1 ) 3 ( .5 ) 8 , 4D; also G ( x ) + ln x , x = 0 ( .05 ) 1 , 4D.

  • Zhang and Jin (1996, pp. 637, 639) includes ( 2 / π ) e x 2 , erf x , x = 0 ( .02 ) 1 ( .04 ) 3 , 8D; C ( x ) , S ( x ) , x = 0 ( .2 ) 10 ( 2 ) 100 ( 100 ) 500 , 8D.

  • Zhang and Jin (1996, pp. 638, 640–641) includes the real and imaginary parts of erf z , x [ 0 , 5 ] , y = 0.5 ( .5 ) 3 , 7D and 8D, respectively; the real and imaginary parts of x e ± i t 2 d t , ( 1 / π ) e i ( x 2 + ( π / 4 ) ) x e ± i t 2 d t , x = 0 ( .5 ) 20 ( 1 ) 25 , 8D, together with the corresponding modulus and phase to 8D and 6D (degrees), respectively.

  • Zhang and Jin (1996, p. 642) includes the first 10 zeros of erf z , 9D; the first 25 distinct zeros of C ( z ) and S ( z ) , 8S.

  • 24: 10.75 Tables
  • Achenbach (1986) tabulates J 0 ( x ) , J 1 ( x ) , Y 0 ( x ) , Y 1 ( x ) , x = 0 ( .1 ) 8 , 20D or 18–20S.

  • Bickley et al. (1952) tabulates x n I n ( x ) or e x I n ( x ) , x n K n ( x ) or e x K n ( x ) , n = 2 ( 1 ) 20 , x = 0 (.01 or .1) 10(.1) 20, 8S; I n ( x ) , K n ( x ) , n = 0 ( 1 ) 20 , x = 0 or 0.1 ( .1 ) 20 , 10S.

  • The main tables in Abramowitz and Stegun (1964, Chapter 9) give e x I n ( x ) , e x K n ( x ) , n = 0 , 1 , 2 , x = 0 ( .1 ) 10 ( .2 ) 20 , 8D–10D or 10S; x e x I n ( x ) , ( x / π ) e x K n ( x ) , n = 0 , 1 , 2 , 1 / x = 0 ( .002 ) 0.05 ; K 0 ( x ) + I 0 ( x ) ln x , x ( K 1 ( x ) I 1 ( x ) ln x ) , x = 0 ( .1 ) 2 , 8D; e x I n ( x ) , e x K n ( x ) , n = 3 ( 1 ) 9 , x = 0 ( .2 ) 10 ( .5 ) 20 , 5S; I n ( x ) , K n ( x ) , n = 0 ( 1 ) 20 ( 10 ) 50 , 100 , x = 1 , 2 , 5 , 10 , 50 , 100 , 9–10S.

  • Kerimov and Skorokhodov (1984b) tabulates all zeros of the principal values of K n ( z ) and K n ( z ) , for n = 2 ( 1 ) 20 , 9S.

  • Zhang and Jin (1996, p. 271) tabulates e x 0 x I 0 ( t ) d t , e x 0 x t 1 ( I 0 ( t ) 1 ) d t , e x x K 0 ( t ) d t , x e x x t 1 K 0 ( t ) d t , x = 0 ( .1 ) 1 ( .5 ) 20 , 8D.

  • 25: 6.16 Mathematical Applications
    §6.16(i) The Gibbs Phenomenon
    Hence, if x is fixed and n , then S n ( x ) 1 4 π , 0 , or 1 4 π according as 0 < x < π , x = 0 , or π < x < 0 ; compare (6.2.14). … The first maximum of 1 2 Si ( x ) for positive x occurs at x = π and equals ( 1.1789 ) × 1 4 π ; compare Figure 6.3.2. …
    §6.16(ii) Number-Theoretic Significance of li ( x )
    If we assume Riemann’s hypothesis that all nonreal zeros of ζ ( s ) have real part of 1 2 25.10(i)), then …
    26: Software Index
    27: Peter L. Walker
    Walker’s books are An Introduction to Complex Analysis, published by Hilger in 1974, The Theory of Fourier Series and Integrals, published by Wiley in 1986, Elliptic Functions. A Constructive Approach, published by Wiley in 1996, and Examples and Theorems in Analysis, published by Springer in 2004. …
  • 28: 27.2 Functions
    Euclid’s Elements (Euclid (1908, Book IX, Proposition 20)) gives an elegant proof that there are infinitely many primes. …
    Table 27.2.2: Functions related to division.
    n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n )
    5 4 2 6 18 6 6 39 31 30 2 32 44 20 6 84
    6 2 4 12 19 18 2 20 32 16 6 63 45 24 6 78
    7 6 2 8 20 8 6 42 33 20 4 48 46 22 4 72
    11 10 2 12 24 8 8 60 37 36 2 38 50 20 6 93
    29: 36.5 Stokes Sets
    §36.5(ii) Cuspoids
    36.5.7 X = 9 20 + 20 u 4 Y 2 20 u 2 + 6 u 2 sign ( z ) ,
    §36.5(iii) Umbilics
    §36.5(iv) Visualizations
    Red and blue numbers in each region correspond, respectively, to the numbers of real and complex critical points that contribute to the asymptotics of the canonical integral away from the bifurcation sets. …
    30: 28 Mathieu Functions and Hill’s Equation