About the Project

periodic zeta function

AdvancedHelp

(0.003 seconds)

1—10 of 23 matching pages

1: 25.13 Periodic Zeta Function
§25.13 Periodic Zeta Function
The notation F ( x , s ) is used for the polylogarithm Li s ( e 2 π i x ) with x real:
25.13.1 F ( x , s ) n = 1 e 2 π i n x n s ,
Also,
25.13.2 F ( x , s ) = Γ ( 1 s ) ( 2 π ) 1 s ( e π i ( 1 s ) / 2 ζ ( 1 s , x ) + e π i ( s 1 ) / 2 ζ ( 1 s , 1 x ) ) , 0 < x < 1 , s > 1 ,
2: 25.1 Special Notation
The main related functions are the Hurwitz zeta function ζ ( s , a ) , the dilogarithm Li 2 ( z ) , the polylogarithm Li s ( z ) (also known as Jonquière’s function ϕ ( z , s ) ), Lerch’s transcendent Φ ( z , s , a ) , and the Dirichlet L -functions L ( s , χ ) .
3: 23.2 Definitions and Periodic Properties
The function ζ ( z ) is quasi-periodic: for j = 1 , 2 , 3 , …
4: 25.16 Mathematical Applications
25.16.6 H ( s ) = ζ ( s ) + γ ζ ( s ) + 1 2 ζ ( s + 1 ) + r = 1 k ζ ( 1 2 r ) ζ ( s + 2 r ) + n = 1 1 n s n B ~ 2 k + 1 ( x ) x 2 k + 2 d x ,
25.16.7 H ( s ) = 1 2 ζ ( s + 1 ) + ζ ( s ) s 1 r = 1 k ( s + 2 r 2 2 r 1 ) ζ ( 1 2 r ) ζ ( s + 2 r ) ( s + 2 k 2 k + 1 ) n = 1 1 n n B ~ 2 k + 1 ( x ) x s + 2 k + 1 d x .
5: 25.11 Hurwitz Zeta Function
25.11.6 ζ ( s , a ) = 1 a s ( 1 2 + a s 1 ) s ( s + 1 ) 2 0 B ~ 2 ( x ) B 2 ( x + a ) s + 2 d x , s 1 , s > 1 , a > 0 .
25.11.7 ζ ( s , a ) = 1 a s + 1 ( 1 + a ) s ( 1 2 + 1 + a s 1 ) + k = 1 n ( s + 2 k 2 2 k 1 ) B 2 k 2 k 1 ( 1 + a ) s + 2 k 1 ( s + 2 n 2 n + 1 ) 1 B ~ 2 n + 1 ( x ) ( x + a ) s + 2 n + 1 d x , s 1 , a > 0 , n = 1 , 2 , 3 , , s > 2 n .
25.11.19 ζ ( s , a ) = ln a a s ( 1 2 + a s 1 ) a 1 s ( s 1 ) 2 + s ( s + 1 ) 2 0 ( B ~ 2 ( x ) B 2 ) ln ( x + a ) ( x + a ) s + 2 d x ( 2 s + 1 ) 2 0 B ~ 2 ( x ) B 2 ( x + a ) s + 2 d x , s > 1 , s 1 , a > 0 .
25.11.20 ( 1 ) k ζ ( k ) ( s , a ) = ( ln a ) k a s ( 1 2 + a s 1 ) + k ! a 1 s r = 0 k 1 ( ln a ) r r ! ( s 1 ) k r + 1 s ( s + 1 ) 2 0 ( B ~ 2 ( x ) B 2 ) ( ln ( x + a ) ) k ( x + a ) s + 2 d x + k ( 2 s + 1 ) 2 0 ( B ~ 2 ( x ) B 2 ) ( ln ( x + a ) ) k 1 ( x + a ) s + 2 d x k ( k 1 ) 2 0 ( B ~ 2 ( x ) B 2 ) ( ln ( x + a ) ) k 2 ( x + a ) s + 2 d x , s > 1 , s 1 , a > 0 .
6: 25.2 Definition and Expansions
25.2.9 ζ ( s ) = k = 1 N 1 k s + N 1 s s 1 1 2 N s + k = 1 n ( s + 2 k 2 2 k 1 ) B 2 k 2 k N 1 s 2 k ( s + 2 n 2 n + 1 ) N B ~ 2 n + 1 ( x ) x s + 2 n + 1 d x , s > 2 n ; n , N = 1 , 2 , 3 , .
25.2.10 ζ ( s ) = 1 s 1 + 1 2 + k = 1 n ( s + 2 k 2 2 k 1 ) B 2 k 2 k ( s + 2 n 2 n + 1 ) 1 B ~ 2 n + 1 ( x ) x s + 2 n + 1 d x , s > 2 n , n = 1 , 2 , 3 , .
7: 31.2 Differential Equations
§31.2(iv) Doubly-Periodic Forms
Jacobi’s Elliptic Form
z = sn 2 ( ζ , k ) .
31.2.8 d 2 w d ζ 2 + ( ( 2 γ 1 ) cn ζ dn ζ sn ζ ( 2 δ 1 ) sn ζ dn ζ cn ζ ( 2 ϵ 1 ) k 2 sn ζ cn ζ dn ζ ) d w d ζ + 4 k 2 ( α β sn 2 ζ q ) w = 0 .
Weierstrass’s Form
8: Bibliography K
  • A. A. Karatsuba and S. M. Voronin (1992) The Riemann Zeta-Function. de Gruyter Expositions in Mathematics, Vol. 5, Walter de Gruyter & Co., Berlin.
  • M. Katsurada (2003) Asymptotic expansions of certain q -series and a formula of Ramanujan for specific values of the Riemann zeta function. Acta Arith. 107 (3), pp. 269–298.
  • J. Keating (1993) The Riemann Zeta-Function and Quantum Chaology. In Quantum Chaos (Varenna, 1991), Proc. Internat. School of Phys. Enrico Fermi, CXIX, pp. 145–185.
  • K. S. Kölbig (1970) Complex zeros of an incomplete Riemann zeta function and of the incomplete gamma function. Math. Comp. 24 (111), pp. 679–696.
  • K. S. Kölbig (1972a) Complex zeros of two incomplete Riemann zeta functions. Math. Comp. 26 (118), pp. 551–565.
  • 9: Errata
  • Equations (25.11.6), (25.11.19), and (25.11.20)

    Originally all six integrands in these equations were incorrect because their numerators contained the function B ~ 2 ( x ) . The correct function is B ~ 2 ( x ) B 2 2 . The new equations are:

    25.11.6 ζ ( s , a ) = 1 a s ( 1 2 + a s 1 ) s ( s + 1 ) 2 0 B ~ 2 ( x ) B 2 ( x + a ) s + 2 d x , s 1 , s > 1 , a > 0

    Reported 2016-05-08 by Clemens Heuberger.

    25.11.19 ζ ( s , a ) = ln a a s ( 1 2 + a s 1 ) a 1 s ( s 1 ) 2 + s ( s + 1 ) 2 0 ( B ~ 2 ( x ) B 2 ) ln ( x + a ) ( x + a ) s + 2 d x ( 2 s + 1 ) 2 0 B ~ 2 ( x ) B 2 ( x + a ) s + 2 d x , s > 1 , s 1 , a > 0

    Reported 2016-06-27 by Gergő Nemes.

    25.11.20 ( 1 ) k ζ ( k ) ( s , a ) = ( ln a ) k a s ( 1 2 + a s 1 ) + k ! a 1 s r = 0 k 1 ( ln a ) r r ! ( s 1 ) k r + 1 s ( s + 1 ) 2 0 ( B ~ 2 ( x ) B 2 ) ( ln ( x + a ) ) k ( x + a ) s + 2 d x + k ( 2 s + 1 ) 2 0 ( B ~ 2 ( x ) B 2 ) ( ln ( x + a ) ) k 1 ( x + a ) s + 2 d x k ( k 1 ) 2 0 ( B ~ 2 ( x ) B 2 ) ( ln ( x + a ) ) k 2 ( x + a ) s + 2 d x , s > 1 , s 1 , a > 0

    Reported 2016-06-27 by Gergő Nemes.

  • 10: 24.17 Mathematical Applications
    §24.17(ii) Spline Functions
    The functions
    Bernoulli Monosplines
    §24.17(iii) Number Theory
    Bernoulli and Euler numbers and polynomials occur in: number theory via (24.4.7), (24.4.8), and other identities involving sums of powers; the Riemann zeta function and L -series (§25.15, Apostol (1976), and Ireland and Rosen (1990)); arithmetic of cyclotomic fields and the classical theory of Fermat’s last theorem (Ribenboim (1979) and Washington (1997)); p -adic analysis (Koblitz (1984, Chapter 2)). …