About the Project

partial%20fractions

AdvancedHelp

(0.001 seconds)

21—30 of 256 matching pages

21: 1.9 Calculus of a Complex Variable
β–Ί
u x = v y ,
β–Ί
u y = v x
β–ΊConversely, if at a given point ( x , y ) the partial derivatives u / x , u / y , v / x , and v / y exist, are continuous, and satisfy (1.9.25), then f ⁑ ( z ) is differentiable at z = x + i ⁒ y . … β–Ί
Bilinear Transformation
β–ΊOther names for the bilinear transformation are fractional linear transformation, homographic transformation, and Möbius transformation. …
22: 21.7 Riemann Surfaces
β–Ίby setting Ξ» = Ξ» ~ / Ξ· ~ , ΞΌ = ΞΌ ~ / Ξ· ~ , and then clearing fractions. … β–Ί
21.7.7 ( z 1 ⁑ ΞΈ ⁒ [ 𝜢 𝜷 ] ⁑ ( 𝐳 | 𝛀 ) | 𝐳 = 𝟎 , , z g ⁑ ΞΈ ⁒ [ 𝜢 𝜷 ] ⁑ ( 𝐳 | 𝛀 ) | 𝐳 = 𝟎 ) 𝟎 .
β–Ί
23: 9.18 Tables
β–Ί
  • Zhang and Jin (1996, p. 337) tabulates Ai ⁑ ( x ) , Ai ⁑ ( x ) , Bi ⁑ ( x ) , Bi ⁑ ( x ) for x = 0 ⁒ ( 1 ) ⁒ 20 to 8S and for x = 20 ⁒ ( 1 ) ⁒ 0 to 9D.

  • β–Ί
  • Miller (1946) tabulates a k , Ai ⁑ ( a k ) , a k , Ai ⁑ ( a k ) , k = 1 ⁒ ( 1 ) ⁒ 50 ; b k , Bi ⁑ ( b k ) , b k , Bi ⁑ ( b k ) , k = 1 ⁒ ( 1 ) ⁒ 20 . Precision is 8D. Entries for k = 1 ⁒ ( 1 ) ⁒ 20 are reproduced in Abramowitz and Stegun (1964, Chapter 10).

  • β–Ί
  • Sherry (1959) tabulates a k , Ai ⁑ ( a k ) , a k , Ai ⁑ ( a k ) , k = 1 ⁒ ( 1 ) ⁒ 50 ; 20S.

  • β–Ί
  • Zhang and Jin (1996, p. 339) tabulates a k , Ai ⁑ ( a k ) , a k , Ai ⁑ ( a k ) , b k , Bi ⁑ ( b k ) , b k , Bi ⁑ ( b k ) , k = 1 ⁒ ( 1 ) ⁒ 20 ; 8D.

  • β–Ί
  • Smirnov (1960) tabulates U 1 ⁑ ( x , Ξ± ) , U 2 ⁑ ( x , Ξ± ) , defined by (9.13.20), (9.13.21), and also U 1 ⁑ ( x , Ξ± ) / x , U 2 ⁑ ( x , Ξ± ) / x , for Ξ± = 1 , x = 6 ⁒ ( .01 ) ⁒ 10 to 5D or 5S, and also for Ξ± = ± 1 4 , ± 1 3 , ± 1 2 , ± 2 3 , ± 3 4 , 5 4 , 4 3 , 3 2 , 5 3 , 7 4 , 2, x = 0 ⁒ ( .01 ) ⁒ 6 ; 4D.

  • 24: 22.12 Expansions in Other Trigonometric Series and Doubly-Infinite Partial Fractions: Eisenstein Series
    §22.12 Expansions in Other Trigonometric Series and Doubly-Infinite Partial Fractions: Eisenstein Series
    β–Ί
    22.12.13 2 ⁒ K ⁑ ⁒ cs ⁑ ( 2 ⁒ K ⁑ ⁒ t , k ) = lim N n = N N ( 1 ) n ⁒ Ο€ tan ⁑ ( Ο€ ⁒ ( t n ⁒ Ο„ ) ) = lim N n = N N ( 1 ) n ⁒ ( lim M m = M M 1 t m n ⁒ Ο„ ) .
    25: 33.23 Methods of Computation
    β–ΊCancellation errors increase with increases in ρ and | r | , and may be estimated by comparing the final sum of the series with the largest partial sum. … β–Ί
    §33.23(v) Continued Fractions
    β–Ί§33.8 supplies continued fractions for F β„“ / F β„“ and H β„“ ± / H β„“ ± . … β–ΊThompson and Barnett (1985, 1986) and Thompson (2004) use combinations of series, continued fractions, and Padé-accelerated asymptotic expansions (§3.11(iv)) for the analytic continuations of Coulomb functions. …
    26: 1.10 Functions of a Complex Variable
    β–ΊLet D be a bounded domain with boundary D and let D ¯ = D D . If f ⁑ ( z ) is continuous on D ¯ and analytic in D , then | f ⁑ ( z ) | attains its maximum on D . … β–ΊThe convergence of the infinite product is uniform if the sequence of partial products converges uniformly. … β–Ί
    §1.10(x) Infinite Partial Fractions
    β–Ί
    Mittag-Leffler’s Expansion
    27: 23.21 Physical Applications
    β–Ί
    §23.21(ii) Nonlinear Evolution Equations
    β–ΊAirault et al. (1977) applies the function to an integrable classical many-body problem, and relates the solutions to nonlinear partial differential equations. … β–Ί
    23.21.2 ( η ΢ ) ⁒ ( ΢ ξ ) ⁒ ( ξ η ) ⁒ 2 = ( ΢ η ) ⁒ f ⁑ ( ξ ) ⁒ f ⁑ ( ξ ) ⁒ ξ + ( ξ ΢ ) ⁒ f ⁑ ( η ) ⁒ f ⁑ ( η ) ⁒ η + ( η ξ ) ⁒ f ⁑ ( ΢ ) ⁒ f ⁑ ( ΢ ) ⁒ ΢ ,
    β–Ί
    23.21.5 ( ⁑ ( v ) ⁑ ( w ) ) ⁒ ( ⁑ ( w ) ⁑ ( u ) ) ⁒ ( ⁑ ( u ) ⁑ ( v ) ) ⁒ 2 = ( ⁑ ( w ) ⁑ ( v ) ) ⁒ 2 u 2 + ( ⁑ ( u ) ⁑ ( w ) ) ⁒ 2 v 2 + ( ⁑ ( v ) ⁑ ( u ) ) ⁒ 2 w 2 .
    28: 3.8 Nonlinear Equations
    β–Ί β–Ί
    3.8.15 p ⁑ ( x ) = ( x 1 ) ⁒ ( x 2 ) ⁒ β‹― ⁒ ( x 20 )
    β–ΊConsider x = 20 and j = 19 . We have p ⁑ ( 20 ) = 19 ! and a 19 = 1 + 2 + β‹― + 20 = 210 . … β–Ί
    3.8.16 d x d a 19 = 20 19 19 ! = ( 4.30 ⁒ ) × 10 7 .
    29: 28.32 Mathematical Applications
    β–Ί β–Ί
    28.32.3 2 V ξ 2 + 2 V η 2 + 1 2 ⁒ c 2 ⁒ k 2 ⁒ ( cosh ⁑ ( 2 ⁒ ξ ) cos ⁑ ( 2 ⁒ η ) ) ⁒ V = 0 .
    β–Ί
    28.32.4 2 K z 2 2 K ΢ 2 = 2 ⁒ q ⁒ ( cos ⁑ ( 2 ⁒ z ) cos ⁑ ( 2 ⁒ ΢ ) ) ⁒ K .
    β–Ί
    28.32.5 K ⁑ ( z , ΢ ) ⁒ d u ⁑ ( ΢ ) d ΢ u ⁑ ( ΢ ) ⁒ K ⁑ ( z , ΢ ) ΢
    30: 20.13 Physical Applications
    β–ΊThe functions ΞΈ j ⁑ ( z | Ο„ ) , j = 1 , 2 , 3 , 4 , provide periodic solutions of the partial differential equation β–Ί
    20.13.1 ΞΈ ⁑ ( z | Ο„ ) / Ο„ = ΞΊ ⁒ 2 ΞΈ ⁑ ( z | Ο„ ) / z 2 ,
    β–Ί
    20.13.2 θ / t = α ⁒ 2 θ / z 2 ,