About the Project

order chelsea pfizer no prescription consultation visit driver-main.aspx

AdvancedHelp

(0.002 seconds)

1—10 of 284 matching pages

1: 28.12 Definitions and Basic Properties
The introduction to the eigenvalues and the functions of general order proceeds as in §§28.2(i), 28.2(ii), and 28.2(iii), except that we now restrict ν ^ 0 , 1 ; equivalently ν n . …
§28.12(ii) Eigenfunctions me ν ( z , q )
For q = 0 , …
2: 28.2 Definitions and Basic Properties
§28.2(vi) Eigenfunctions
3: Robb J. Muirhead
… …  1946 in Adelaide, South Australia) is Senior Director, Statistical Research and Consulting Center, Pfizer Global R&D, New London, Connecticut. …
4: 34.11 Higher-Order 3 n j Symbols
§34.11 Higher-Order 3 n j Symbols
5: 10.24 Functions of Imaginary Order
§10.24 Functions of Imaginary Order
and J ~ ν ( x ) , Y ~ ν ( x ) are linearly independent solutions of (10.24.1): … In consequence of (10.24.6), when x is large J ~ ν ( x ) and Y ~ ν ( x ) comprise a numerically satisfactory pair of solutions of (10.24.1); compare §2.7(iv). … …
6: Bibliography T
  • N. M. Temme (1994c) Steepest descent paths for integrals defining the modified Bessel functions of imaginary order. Methods Appl. Anal. 1 (1), pp. 14–24.
  • I. J. Thompson (2004) Erratum to “COULCC: A continued-fraction algorithm for Coulomb functions of complex order with complex arguments”. Comput. Phys. Comm. 159 (3), pp. 241–242.
  • E. C. Titchmarsh (1946) Eigenfunction Expansions Associated with Second-Order Differential Equations. Clarendon Press, Oxford.
  • E. C. Titchmarsh (1958) Eigenfunction Expansions Associated with Second Order Differential Equations, Part 2, Partial Differential Equations. Clarendon Press, Oxford.
  • E. C. Titchmarsh (1986a) Introduction to the Theory of Fourier Integrals. Third edition, Chelsea Publishing Co., New York.
  • 7: 10.45 Functions of Imaginary Order
    §10.45 Functions of Imaginary Order
    and I ~ ν ( x ) , K ~ ν ( x ) are real and linearly independent solutions of (10.45.1): … The corresponding result for K ~ ν ( x ) is given by …
    8: Bibliography D
  • L. E. Dickson (1919) History of the Theory of Numbers (3 volumes). Carnegie Institution of Washington, Washington, D.C..
  • D. Ding (2000) A simplified algorithm for the second-order sound fields. J. Acoust. Soc. Amer. 108 (6), pp. 2759–2764.
  • P. G. L. Dirichlet (1849) Über die Bestimmung der mittleren Werthe in der Zahlentheorie. Abhandlungen der Königlich Preussischen Akademie der Wissenschaften von 1849, pp. 69–83 (German).
  • T. M. Dunster (2003b) Uniform asymptotic expansions for associated Legendre functions of large order. Proc. Roy. Soc. Edinburgh Sect. A 133 (4), pp. 807–827.
  • T. M. Dunster (2013) Conical functions of purely imaginary order and argument. Proc. Roy. Soc. Edinburgh Sect. A 143 (5), pp. 929–955.
  • 9: Bibliography N
  • G. Nemes (2014b) The resurgence properties of the large order asymptotics of the Anger-Weber function I. J. Class. Anal. 4 (1), pp. 1–39.
  • G. Nemes (2014c) The resurgence properties of the large order asymptotics of the Anger-Weber function II. J. Class. Anal. 4 (2), pp. 121–147.
  • J. J. Nestor (1984) Uniform Asymptotic Approximations of Solutions of Second-order Linear Differential Equations, with a Coalescing Simple Turning Point and Simple Pole. Ph.D. Thesis, University of Maryland, College Park, MD.
  • N. Nielsen (1965) Die Gammafunktion. Band I. Handbuch der Theorie der Gammafunktion. Band II. Theorie des Integrallogarithmus und verwandter Transzendenten. Chelsea Publishing Co., New York (German).
  • N. E. Nörlund (1924) Vorlesungen über Differenzenrechnung. Springer-Verlag, Berlin (German).
  • 10: 10.26 Graphics
    §10.26(i) Real Order and Variable
    §10.26(ii) Real Order, Complex Variable
    §10.26(iii) Imaginary Order, Real Variable
    See accompanying text
    Figure 10.26.7: I ~ 1 / 2 ( x ) , K ~ 1 / 2 ( x ) , 0.01 x 3 . Magnify
    See accompanying text
    Figure 10.26.8: I ~ 1 ( x ) , K ~ 1 ( x ) , 0.01 x 3 . Magnify