About the Project

nonlinear equations

AdvancedHelp

(0.001 seconds)

21—30 of 31 matching pages

21: 3.3 Interpolation
It can be used for solving a nonlinear scalar equation f ( z ) = 0 approximately. …
22: Bibliography I
  • A. R. Its, A. S. Fokas, and A. A. Kapaev (1994) On the asymptotic analysis of the Painlevé equations via the isomonodromy method. Nonlinearity 7 (5), pp. 1291–1325.
  • 23: Alexander A. Its
    Books by Its are The Isomonodromic Deformation Method in the Theory of Painlevé Equations (with V. … Novokshënov), published by Springer in 1986, Algebro-geometric Approach to Nonlinear Integrable Problems (with E. …
    24: 18.38 Mathematical Applications
    While the Toda equation is an important model of nonlinear systems, the special functions of mathematical physics are usually regarded as solutions to linear equations. …
    25: Alexander I. Bobenko
    Bobenko’s books are Algebro-geometric Approach to Nonlinear Integrable Problems (with E. … Matveev), published by Springer in 1994, Painlevé Equations in the Differential Geometry of Surfaces (with U. …
    26: 15.8 Transformations of Variable
    A necessary and sufficient condition that there exists a quadratic transformation is that at least one of the equations shown in Table 15.8.1 is satisfied. … The hypergeometric functions that correspond to Groups 3 and 4 have a nonlinear function of z as variable. … In the equations that follow in this subsection all functions take their principal values. …
    27: Bibliography W
  • Z. Wang and R. Wong (2005) Linear difference equations with transition points. Math. Comp. 74 (250), pp. 629–653.
  • H. Watanabe (1995) Solutions of the fifth Painlevé equation. I. Hokkaido Math. J. 24 (2), pp. 231–267.
  • E. J. Weniger (1989) Nonlinear sequence transformations for the acceleration of convergence and the summation of divergent series. Computer Physics Reports 10 (5-6), pp. 189–371.
  • E. J. Weniger (1996) Computation of the Whittaker function of the second kind by summing its divergent asymptotic series with the help of nonlinear sequence transformations. Computers in Physics 10 (5), pp. 496–503.
  • G. B. Whitham (1974) Linear and Nonlinear Waves. John Wiley & Sons, New York.
  • 28: 32.7 Bäcklund Transformations
    §32.7(ii) Second Painlevé Equation
    The solutions w α = w ( z ; α ) , w α ± 1 = w ( z ; α ± 1 ) , satisfy the nonlinear recurrence relation …
    §32.7(iii) Third Painlevé Equation
    §32.7(iv) Fourth Painlevé Equation
    29: Bibliography M
  • R. S. Maier (2005) On reducing the Heun equation to the hypergeometric equation. J. Differential Equations 213 (1), pp. 171–203.
  • R. S. Maier (2007) The 192 solutions of the Heun equation. Math. Comp. 76 (258), pp. 811–843.
  • M. Mazzocco (2001a) Rational solutions of the Painlevé VI equation. J. Phys. A 34 (11), pp. 2281–2294.
  • M. Mazzocco (2001b) Picard and Chazy solutions to the Painlevé VI equation. Math. Ann. 321 (1), pp. 157–195.
  • J. W. Miles (1980) The Second Painlevé Transcendent: A Nonlinear Airy Function. In Mechanics Today, Vol. 5, pp. 297–313.
  • 30: Bibliography P
  • P. Painlevé (1906) Sur les équations différentielles du second ordre à points critiques fixès. C.R. Acad. Sc. Paris 143, pp. 1111–1117.
  • R. B. Paris (1992a) Smoothing of the Stokes phenomenon for high-order differential equations. Proc. Roy. Soc. London Ser. A 436, pp. 165–186.
  • R. B. Paris (2002b) A uniform asymptotic expansion for the incomplete gamma function. J. Comput. Appl. Math. 148 (2), pp. 323–339.
  • S. Paszkowski (1988) Evaluation of Fermi-Dirac Integral. In Nonlinear Numerical Methods and Rational Approximation (Wilrijk, 1987), A. Cuyt (Ed.), Mathematics and Its Applications, Vol. 43, pp. 435–444.
  • G. Pólya (1949) Remarks on computing the probability integral in one and two dimensions. In Proceedings of the Berkeley Symposium on Mathematical Statistics and Probability, 1945, 1946, pp. 63–78.