About the Project

multivariate hypergeometric function

AdvancedHelp

(0.004 seconds)

11—20 of 25 matching pages

11: 19.20 Special Cases
19.20.3 R F ( x , a , y ) = R 1 4 ( 3 4 , 1 2 ; a 2 , x y ) , a = 1 2 ( x + y ) .
19.20.23 R D ( x , y , a ) = R 3 4 ( 5 4 , 1 2 ; a 2 , x y ) , a = 1 2 x + 1 2 y .
19.20.25 R c ( 𝐛 ; 𝐳 ) = j = 1 n z j b j ,
19.20.26 R a ( 𝐛 ; 𝐳 ) = j = 1 n z j b j R a ( 𝐛 ; 𝒛 𝟏 ) , a + a = c , 𝒛 𝟏 = ( z 1 1 , , z n 1 ) .
12: 19.25 Relations to Other Functions
19.25.43 R a ( b 1 , b 2 ; z 1 , z 2 ) = z 2 a F 1 2 ( a , b 1 ; b 1 + b 2 ; 1 ( z 1 / z 2 ) ) .
13: 19.28 Integrals of Elliptic Integrals
19.28.4 0 1 t σ 1 ( 1 t ) c 1 R a ( b 1 , b 2 ; t , 1 ) d t = Γ ( c ) Γ ( σ ) Γ ( σ + b 2 a ) Γ ( σ + c a ) Γ ( σ + b 2 ) , c = b 1 + b 2 > 0 , σ > max ( 0 , a b 2 ) .
14: 19.24 Inequalities
The condition y z for (19.24.1) and (19.24.2) serves only to identify y as the smaller of the two nonzero variables of a symmetric function; it does not restrict validity.
19.24.1 ln 4 z R F ( 0 , y , z ) + ln y / z 1 2 π , 0 < y z ,
19.24.15 R C ( x , 1 2 ( y + z ) ) R F ( x , y , z ) R C ( x , y z ) , x 0 ,
15: 35.9 Applications
§35.9 Applications
In multivariate statistical analysis based on the multivariate normal distribution, the probability density functions of many random matrices are expressible in terms of generalized hypergeometric functions of matrix argument F q p , with p 2 and q 1 . … For other statistical applications of F q p functions of matrix argument see Perlman and Olkin (1980), Groeneboom and Truax (2000), Bhaumik and Sarkar (2002), Richards (2004) (monotonicity of power functions of multivariate statistical test criteria), Bingham et al. (1992) (Procrustes analysis), and Phillips (1986) (exact distributions of statistical test criteria). …
16: 35.8 Generalized Hypergeometric Functions of Matrix Argument
35.8.5 F 2 3 ( a 1 , a 2 , a 3 b 1 , b 2 ; 𝐈 ) = Γ m ( b 2 ) Γ m ( c ) Γ m ( b 2 a 3 ) Γ m ( c + a 3 ) F 2 3 ( b 1 a 1 , b 1 a 2 , a 3 b 1 , c + a 3 ; 𝐈 ) , ( b 2 ) , ( c ) > 1 2 ( m 1 ) .
35.8.6 F 2 3 ( a 1 , a 2 , a 3 b 1 , b 2 ; 𝐈 ) = Γ m ( b 1 a 1 ) Γ m ( b 1 a 2 ) Γ m ( b 1 ) Γ m ( b 1 a 1 a 2 ) Γ m ( b 1 a 3 ) Γ m ( b 1 a 1 a 2 a 3 ) Γ m ( b 1 a 1 a 3 ) Γ m ( b 1 a 2 a 3 ) .
35.8.7 F 2 3 ( a 1 , a 2 , a 3 b 1 , b 2 ; 𝐈 ) = Γ m ( b 1 ) Γ m ( b 2 ) Γ ( c ) Γ m ( a 1 ) Γ m ( c + a 2 ) Γ ( c + a 3 ) F 2 3 ( b 1 a 1 , b 2 a 2 , c c + a 2 , c + a 3 ; 𝐈 ) , ( b 1 ) , ( b 2 ) , ( c ) > 1 2 ( m 1 ) .
35.8.13 𝟎 < 𝐗 < 𝐈 | 𝐗 | a 1 1 2 ( m + 1 ) | 𝐈 𝐗 | b 1 a 1 1 2 ( m + 1 ) F q p ( a 2 , , a p + 1 b 2 , , b q + 1 ; 𝐓 𝐗 ) d 𝐗 = 1 B m ( b 1 a 1 , a 1 ) F q + 1 p + 1 ( a 1 , , a p + 1 b 1 , , b q + 1 ; 𝐓 ) , ( b 1 a 1 ) , ( a 1 ) > 1 2 ( m 1 ) .
17: 35.6 Confluent Hypergeometric Functions of Matrix Argument
35.6.3 L ν ( γ ) ( 𝐓 ) = Γ m ( γ + ν + 1 2 ( m + 1 ) ) Γ m ( γ + 1 2 ( m + 1 ) ) F 1 1 ( ν γ + 1 2 ( m + 1 ) ; 𝐓 ) , ( γ ) , ( γ + ν ) > 1 .
35.6.6 B m ( b 1 , b 2 ) | 𝐓 | b 1 + b 2 1 2 ( m + 1 ) F 1 1 ( a 1 + a 2 b 1 + b 2 ; 𝐓 ) = 𝟎 < 𝐗 < 𝐓 | 𝐗 | b 1 1 2 ( m + 1 ) F 1 1 ( a 1 b 1 ; 𝐗 ) | 𝐓 𝐗 | b 2 1 2 ( m + 1 ) F 1 1 ( a 2 b 2 ; 𝐓 𝐗 ) d 𝐗 , ( b 1 ) , ( b 2 ) > 1 2 ( m 1 ) .
35.6.8 𝛀 | 𝐓 | c 1 2 ( m + 1 ) Ψ ( a ; b ; 𝐓 ) d 𝐓 = Γ m ( c ) Γ m ( a c ) Γ m ( c b + 1 2 ( m + 1 ) ) Γ m ( a ) Γ m ( a b + 1 2 ( m + 1 ) ) , ( a ) > ( c ) + 1 2 ( m 1 ) > m 1 , ( c b ) > 1 .
18: 35.7 Gaussian Hypergeometric Function of Matrix Argument
35.7.2 P ν ( γ , δ ) ( 𝐓 ) = Γ m ( γ + ν + 1 2 ( m + 1 ) ) Γ m ( γ + 1 2 ( m + 1 ) ) F 1 2 ( ν , γ + δ + ν + 1 2 ( m + 1 ) γ + 1 2 ( m + 1 ) ; 𝐓 ) , 𝟎 < 𝐓 < 𝐈 ; γ , δ , ν ; ( γ ) > 1 .
35.7.7 F 1 2 ( a , b c ; 𝐈 ) = Γ m ( c ) Γ m ( c a b ) Γ m ( c a ) Γ m ( c b ) , ( c ) , ( c a b ) > 1 2 ( m 1 ) .
35.7.8 F 1 2 ( a , b c ; 𝐓 ) = Γ m ( c ) Γ m ( c a b ) Γ m ( c a ) Γ m ( c b ) F 1 2 ( a , b a + b c + 1 2 ( m + 1 ) ; 𝐈 𝐓 ) , 𝟎 < 𝐓 < 𝐈 ; 1 2 ( j + 1 ) a for some j = 1 , , m ; 1 2 ( j + 1 ) c and c a b 1 2 ( m j ) for all j = 1 , , m .
19: Donald St. P. Richards
Richards has published numerous papers on special functions of matrix argument, harmonic analysis, multivariate statistical analysis, probability inequalities, and applied probability. He is editor of the book Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications, published by the American Mathematical Society in 1992, and coeditor of Representation Theory and Harmonic Analysis: A Conference in Honor of R. A. Kunze (with T. …
  • 20: Bibliography F
  • S. Farid Khwaja and A. B. Olde Daalhuis (2014) Uniform asymptotic expansions for hypergeometric functions with large parameters IV. Anal. Appl. (Singap.) 12 (6), pp. 667–710.
  • R. H. Farrell (1985) Multivariate Calculation. Use of the Continuous Groups. Springer Series in Statistics, Springer-Verlag, New York.
  • J. L. Fields and Y. L. Luke (1963a) Asymptotic expansions of a class of hypergeometric polynomials with respect to the order. II. J. Math. Anal. Appl. 7 (3), pp. 440–451.
  • J. L. Fields and J. Wimp (1961) Expansions of hypergeometric functions in hypergeometric functions. Math. Comp. 15 (76), pp. 390–395.
  • R. C. Forrey (1997) Computing the hypergeometric function. J. Comput. Phys. 137 (1), pp. 79–100.