About the Project

linear transformation

AdvancedHelp

(0.001 seconds)

11—20 of 38 matching pages

11: 19.2 Definitions
Bulirsch’s integrals are linear combinations of Legendre’s integrals that are chosen to facilitate computational application of Bartky’s transformation (Bartky (1938)). …
12: 15.11 Riemann’s Differential Equation
The importance of (15.10.1) is that any homogeneous linear differential equation of the second order with at most three distinct singularities, all regular, in the extended plane can be transformed into (15.10.1). …
13: 18.38 Mathematical Applications
While the Toda equation is an important model of nonlinear systems, the special functions of mathematical physics are usually regarded as solutions to linear equations. …
14: 31.2 Differential Equations
All other homogeneous linear differential equations of the second order having four regular singularities in the extended complex plane, { } , can be transformed into (31.2.1). …
15: Bibliography Z
  • A. H. Zemanian (1987) Distribution Theory and Transform Analysis, An Introduction and Generalized Functions with Applications. Dover, New York.
  • J. Zeng (1992) Weighted derangements and the linearization coefficients of orthogonal Sheffer polynomials. Proc. London Math. Soc. (3) 65 (1), pp. 1–22.
  • J. M. Zhang, X. C. Li, and C. K. Qu (1996) Error bounds for asymptotic solutions of second-order linear difference equations. J. Comput. Appl. Math. 71 (2), pp. 191–212.
  • Q. Zheng (1997) Generalized Watson Transforms and Applications to Group Representations. Ph.D. Thesis, University of Vermont, Burlington,VT.
  • Ya. M. Zhileĭkin and A. B. Kukarkin (1995) A fast Fourier-Bessel transform algorithm. Zh. Vychisl. Mat. i Mat. Fiz. 35 (7), pp. 1128–1133 (Russian).
  • 16: 2.7 Differential Equations
    To include the point at infinity in the foregoing classification scheme, we transform it into the origin by replacing z in (2.7.1) with 1 / z ; see Olver (1997b, pp. 153–154). For corresponding definitions, together with examples, for linear differential equations of arbitrary order see §§16.8(i)16.8(ii). … See §2.11(v) for other examples. The exceptional case f 0 2 = 4 g 0 is handled by Fabry’s transformation: …The transformed differential equation either has a regular singularity at t = , or its characteristic equation has unequal roots. …
    17: Bibliography W
  • Z. Wang and R. Wong (2003) Asymptotic expansions for second-order linear difference equations with a turning point. Numer. Math. 94 (1), pp. 147–194.
  • Z. Wang and R. Wong (2005) Linear difference equations with transition points. Math. Comp. 74 (250), pp. 629–653.
  • W. Wasow (1985) Linear Turning Point Theory. Applied Mathematical Sciences No. 54, Springer-Verlag, New York.
  • G. B. Whitham (1974) Linear and Nonlinear Waves. John Wiley & Sons, New York.
  • R. Wong (2014) Asymptotics of linear recurrences. Anal. Appl. (Singap.) 12 (4), pp. 463–484.
  • 18: 3.11 Approximation Techniques
    Laplace Transform Inversion
    More generally, let f ( x ) be approximated by a linear combination …
    Example. The Discrete Fourier Transform
    is called a discrete Fourier transform pair.
    The Fast Fourier Transform
    19: Bibliography D
  • B. Davies (1973) Complex zeros of linear combinations of spherical Bessel functions and their derivatives. SIAM J. Math. Anal. 4 (1), pp. 128–133.
  • B. Deconinck and J. N. Kutz (2006) Computing spectra of linear operators using the Floquet-Fourier-Hill method. J. Comput. Phys. 219 (1), pp. 296–321.
  • B. A. Dubrovin (1981) Theta functions and non-linear equations. Uspekhi Mat. Nauk 36 (2(218)), pp. 11–80 (Russian).
  • T. M. Dunster (2001a) Convergent expansions for solutions of linear ordinary differential equations having a simple turning point, with an application to Bessel functions. Stud. Appl. Math. 107 (3), pp. 293–323.
  • T. M. Dunster (2014) Olver’s error bound methods applied to linear ordinary differential equations having a simple turning point. Anal. Appl. (Singap.) 12 (4), pp. 385–402.
  • 20: Bibliography
  • M. J. Ablowitz and H. Segur (1977) Exact linearization of a Painlevé transcendent. Phys. Rev. Lett. 38 (20), pp. 1103–1106.
  • M. J. Ablowitz and H. Segur (1981) Solitons and the Inverse Scattering Transform. SIAM Studies in Applied Mathematics, Vol. 4, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
  • N. I. Akhiezer (1988) Lectures on Integral Transforms. Translations of Mathematical Monographs, Vol. 70, American Mathematical Society, Providence, RI.
  • G. E. Andrews (1972) Summations and transformations for basic Appell series. J. London Math. Soc. (2) 4, pp. 618–622.
  • S. Axler (2015) Linear algebra done right. Third edition, Undergraduate Texts in Mathematics, Springer, Cham.