About the Project

large variable

AdvancedHelp

(0.003 seconds)

41—50 of 109 matching pages

41: 13.9 Zeros
For fixed a , b the large z -zeros of M ( a , b , z ) satisfy …where n is a large positive integer, and the logarithm takes its principal value (§4.2(i)). … For fixed b and z in the large a -zeros of M ( a , b , z ) are given by …where n is a large positive integer. … where n is a large positive integer. …
42: Bibliography B
  • C. M. Bender and T. T. Wu (1973) Anharmonic oscillator. II. A study of perturbation theory in large order. Phys. Rev. D 7, pp. 1620–1636.
  • L. C. Biedenharn, R. L. Gluckstern, M. H. Hull, and G. Breit (1955) Coulomb functions for large charges and small velocities. Phys. Rev. (2) 97 (2), pp. 542–554.
  • G. Blanch and I. Rhodes (1955) Table of characteristic values of Mathieu’s equation for large values of the parameter. J. Washington Acad. Sci. 45 (6), pp. 166–196.
  • S. Bochner and W. T. Martin (1948) Several Complex Variables. Princeton Mathematical Series, Vol. 10, Princeton University Press, Princeton, N.J..
  • A. A. Bogush and V. S. Otchik (1997) Problem of two Coulomb centres at large intercentre separation: Asymptotic expansions from analytical solutions of the Heun equation. J. Phys. A 30 (2), pp. 559–571.
  • 43: 11.6 Asymptotic Expansions
    §11.6(i) Large | z | , Fixed ν
    11.6.1 𝐊 ν ( z ) 1 π k = 0 Γ ( k + 1 2 ) ( 1 2 z ) ν 2 k 1 Γ ( ν + 1 2 k ) , | ph z | π δ ,
    §11.6(ii) Large | ν | , Fixed z
    §11.6(iii) Large | ν | , Fixed z / ν
    44: 13.19 Asymptotic Expansions for Large Argument
    §13.19 Asymptotic Expansions for Large Argument
    13.19.1 M κ , μ ( x ) Γ ( 1 + 2 μ ) Γ ( 1 2 + μ κ ) e 1 2 x x κ s = 0 ( 1 2 μ + κ ) s ( 1 2 + μ + κ ) s s ! x s , μ κ 1 2 , 3 2 , .
    13.19.2 M κ , μ ( z ) Γ ( 1 + 2 μ ) Γ ( 1 2 + μ κ ) e 1 2 z z κ s = 0 ( 1 2 μ + κ ) s ( 1 2 + μ + κ ) s s ! z s + Γ ( 1 + 2 μ ) Γ ( 1 2 + μ + κ ) e 1 2 z ± ( 1 2 + μ κ ) π i z κ s = 0 ( 1 2 + μ κ ) s ( 1 2 μ κ ) s s ! ( z ) s , 1 2 π + δ ± ph z 3 2 π δ ,
    13.19.3 W κ , μ ( z ) e 1 2 z z κ s = 0 ( 1 2 + μ κ ) s ( 1 2 μ κ ) s s ! ( z ) s , | ph z | 3 2 π δ .
    45: 2.4 Contour Integrals
    Except that λ is now permitted to be complex, with λ > 0 , we assume the same conditions on q ( t ) and also that the Laplace transform in (2.3.8) converges for all sufficiently large values of z . Then … For large t , the asymptotic expansion of q ( t ) may be obtained from (2.4.3) by Haar’s method. This depends on the availability of a comparison function F ( z ) for Q ( z ) that has an inverse transform …If this integral converges uniformly at each limit for all sufficiently large t , then by the Riemann–Lebesgue lemma (§1.8(i)) … By making a further change of variable
    46: 13.7 Asymptotic Expansions for Large Argument
    §13.7 Asymptotic Expansions for Large Argument
    §13.7(ii) Error Bounds
    13.7.7 z R 1 , z R 2 R ¯ 2 , z R 3 R ¯ 3 ,
    §13.7(iii) Exponentially-Improved Expansion
    For extensions to hyperasymptotic expansions see Olde Daalhuis and Olver (1995a).
    47: 2.3 Integrals of a Real Variable
    k ( ) and λ are positive constants, α is a variable parameter in an interval α 1 α α 2 with α 1 0 and 0 < α 2 k , and x is a large positive parameter. …
    48: 13.8 Asymptotic Approximations for Large Parameters
    §13.8 Asymptotic Approximations for Large Parameters
    §13.8(ii) Large b and z , Fixed a and b / z
    §13.8(iii) Large a
    §13.8(iv) Large a and b
    49: 14.20 Conical (or Mehler) Functions
    It is an important companion solution to 𝖯 1 2 + i τ μ ( x ) when τ is large; compare §§14.20(vii), 14.20(viii), and 10.25(iii). …
    §14.20(vii) Asymptotic Approximations: Large τ , Fixed μ
    §14.20(viii) Asymptotic Approximations: Large τ , 0 μ A τ
    The variable η is defined implicitly by …
    §14.20(ix) Asymptotic Approximations: Large μ , 0 τ A μ
    50: 10.17 Asymptotic Expansions for Large Argument
    10.17.4 Y ν ( z ) ( 2 π z ) 1 2 ( sin ω k = 0 ( 1 ) k a 2 k ( ν ) z 2 k + cos ω k = 0 ( 1 ) k a 2 k + 1 ( ν ) z 2 k + 1 ) , | ph z | π δ ,
    10.17.12 H ν ( 2 ) ( z ) i ( 2 π z ) 1 2 e i ω k = 0 ( i ) k b k ( ν ) z k , 2 π + δ ph z π δ .