About the Project

large order

AdvancedHelp

(0.002 seconds)

41—50 of 89 matching pages

41: 13.22 Zeros
β–ΊAsymptotic approximations to the zeros when the parameters ΞΊ and/or ΞΌ are large can be found by reversion of the uniform approximations provided in §§13.20 and 13.21. For example, if ΞΌ ( 0 ) is fixed and ΞΊ ( > 0 ) is large, then the r th positive zero Ο• r of M ΞΊ , ΞΌ ⁑ ( z ) is given by β–Ί
13.22.1 Ο• r = j 2 ⁒ ΞΌ , r 2 4 ⁒ ΞΊ + j 2 ⁒ ΞΌ , r ⁒ O ⁑ ( ΞΊ 3 2 ) ,
42: 2.4 Contour Integrals
β–ΊExcept that Ξ» is now permitted to be complex, with ⁑ Ξ» > 0 , we assume the same conditions on q ⁑ ( t ) and also that the Laplace transform in (2.3.8) converges for all sufficiently large values of ⁑ z . Then … β–ΊFor large t , the asymptotic expansion of q ⁑ ( t ) may be obtained from (2.4.3) by Haar’s method. This depends on the availability of a comparison function F ⁑ ( z ) for Q ⁑ ( z ) that has an inverse transform …If this integral converges uniformly at each limit for all sufficiently large t , then by the Riemann–Lebesgue lemma (§1.8(i)) … β–Ίin which z is a large real or complex parameter, p ⁑ ( Ξ± , t ) and q ⁑ ( Ξ± , t ) are analytic functions of t and continuous in t and a second parameter Ξ± . …
43: 13.8 Asymptotic Approximations for Large Parameters
§13.8 Asymptotic Approximations for Large Parameters
β–Ί
§13.8(ii) Large b and z , Fixed a and b / z
β–Ί
§13.8(iii) Large a
β–Ίβ–Ί
§13.8(iv) Large a and b
44: 16.11 Asymptotic Expansions
β–Ί
16.11.10 F p p + 1 ⁑ ( a 1 + r , , a k 1 + r , a k , , a p + 1 b 1 + r , , b k + r , b k + 1 , , b p ; z ) = n = 0 m 1 ( a 1 + r ) n ⁒ β‹― ⁒ ( a k 1 + r ) n ⁒ ( a k ) n ⁒ β‹― ⁒ ( a p + 1 ) n ( b 1 + r ) n ⁒ β‹― ⁒ ( b k + r ) n ⁒ ( b k + 1 ) n ⁒ β‹― ⁒ ( b p ) n ⁒ z n n ! + O ⁑ ( 1 r m ) ,
β–Ί
45: 2.8 Differential Equations with a Parameter
β–Ί
2.8.15 W n , 1 ⁑ ( u , ξ ) = Ai ⁑ ( u 2 / 3 ⁒ ξ ) ⁒ ( s = 0 n 1 A s ⁑ ( ξ ) u 2 ⁒ s + O ⁑ ( 1 u 2 ⁒ n 1 ) ) + Ai ⁑ ( u 2 / 3 ⁒ ξ ) ⁒ ( s = 0 n 2 B s ⁑ ( ξ ) u 2 ⁒ s + ( 4 / 3 ) + O ⁑ ( 1 u 2 ⁒ n 1 ) ) ,
β–Ί
2.8.16 W n , 2 ⁑ ( u , ξ ) = Bi ⁑ ( u 2 / 3 ⁒ ξ ) ⁒ ( s = 0 n 1 A s ⁑ ( ξ ) u 2 ⁒ s + O ⁑ ( 1 u 2 ⁒ n 1 ) ) + Bi ⁑ ( u 2 / 3 ⁒ ξ ) ⁒ ( s = 0 n 2 B s ⁑ ( ξ ) u 2 ⁒ s + ( 4 / 3 ) + O ⁑ ( 1 u 2 ⁒ n 1 ) ) .
β–Ί
2.8.22 W n , 1 ⁑ ( u , ξ ) = Ai ⁑ ( u 2 / 3 ⁒ ξ ) ⁒ s = 0 n 1 A s ⁑ ( ξ ) u 2 ⁒ s + Ai ⁑ ( u 2 / 3 ⁒ ξ ) ⁒ s = 0 n 2 B s ⁑ ( ξ ) u 2 ⁒ s + ( 4 / 3 ) + envAi ⁑ ( u 2 / 3 ⁒ ξ ) ⁒ O ⁑ ( 1 u 2 ⁒ n 1 ) ,
β–Ί
2.8.29 W n , 3 ⁑ ( u , ξ ) = | ξ | 1 / 2 ⁒ J ν ⁑ ( u ⁒ | ξ | 1 / 2 ) ⁒ ( s = 0 n 1 A s ⁑ ( ξ ) u 2 ⁒ s + O ⁑ ( 1 u 2 ⁒ n 1 ) ) | ξ | ⁒ J ν + 1 ⁑ ( u ⁒ | ξ | 1 / 2 ) ⁒ ( s = 0 n 2 B s ⁑ ( ξ ) u 2 ⁒ s + 1 + O ⁑ ( 1 u 2 ⁒ n 2 ) ) ,
β–Ί
2.8.30 W n , 4 ⁑ ( u , ξ ) = | ξ | 1 / 2 ⁒ Y ν ⁑ ( u ⁒ | ξ | 1 / 2 ) ⁒ ( s = 0 n 1 A s ⁑ ( ξ ) u 2 ⁒ s + O ⁑ ( 1 u 2 ⁒ n 1 ) ) | ξ | ⁒ Y ν + 1 ⁑ ( u ⁒ | ξ | 1 / 2 ) ⁒ ( s = 0 n 2 B s ⁑ ( ξ ) u 2 ⁒ s + 1 + O ⁑ ( 1 u 2 ⁒ n 2 ) ) .
46: 10.68 Modulus and Phase Functions
β–Ί
§10.68(iii) Asymptotic Expansions for Large Argument
β–Ί
10.68.16 M Ξ½ ⁑ ( x ) = e x / 2 ( 2 ⁒ Ο€ ⁒ x ) 1 2 ⁒ ( 1 ΞΌ 1 8 ⁒ 2 ⁒ 1 x + ( ΞΌ 1 ) 2 256 ⁒ 1 x 2 ( ΞΌ 1 ) ⁒ ( ΞΌ 2 + 14 ⁒ ΞΌ 399 ) 6144 ⁒ 2 ⁒ 1 x 3 + O ⁑ ( 1 x 4 ) ) ,
β–Ί
10.68.17 ln ⁑ M Ξ½ ⁑ ( x ) = x 2 1 2 ⁒ ln ⁑ ( 2 ⁒ Ο€ ⁒ x ) ΞΌ 1 8 ⁒ 2 ⁒ 1 x ( ΞΌ 1 ) ⁒ ( ΞΌ 25 ) 384 ⁒ 2 ⁒ 1 x 3 ( ΞΌ 1 ) ⁒ ( ΞΌ 13 ) 128 ⁒ 1 x 4 + O ⁑ ( 1 x 5 ) ,
β–Ί
10.68.18 ΞΈ Ξ½ ⁑ ( x ) = x 2 + ( 1 2 ⁒ Ξ½ 1 8 ) ⁒ Ο€ + ΞΌ 1 8 ⁒ 2 ⁒ 1 x + ΞΌ 1 16 ⁒ 1 x 2 ( ΞΌ 1 ) ⁒ ( ΞΌ 25 ) 384 ⁒ 2 ⁒ 1 x 3 + O ⁑ ( 1 x 5 ) .
β–Ί
10.68.20 ln ⁑ N Ξ½ ⁑ ( x ) = x 2 + 1 2 ⁒ ln ⁑ ( Ο€ 2 ⁒ x ) + ΞΌ 1 8 ⁒ 2 ⁒ 1 x + ( ΞΌ 1 ) ⁒ ( ΞΌ 25 ) 384 ⁒ 2 ⁒ 1 x 3 ( ΞΌ 1 ) ⁒ ( ΞΌ 13 ) 128 ⁒ 1 x 4 + O ⁑ ( 1 x 5 ) ,
47: 30.11 Radial Spheroidal Wave Functions
β–Ί
§30.11(iii) Asymptotic Behavior
β–Ί
30.11.6 S n m ⁒ ( j ) ⁑ ( z , γ ) = { ψ n ( j ) ⁑ ( γ ⁒ z ) + O ⁑ ( z 2 ⁒ e | ⁑ z | ) , j = 1 , 2 , ψ n ( j ) ⁑ ( γ ⁒ z ) ⁒ ( 1 + O ⁑ ( z 1 ) ) , j = 3 , 4 .
48: 25.11 Hurwitz Zeta Function
β–Ί
25.11.28 ΞΆ ⁑ ( s , a ) = 1 2 ⁒ a s + a 1 s s 1 + k = 1 n B 2 ⁒ k ( 2 ⁒ k ) ! ⁒ ( s ) 2 ⁒ k 1 ⁒ a 1 s 2 ⁒ k + 1 Ξ“ ⁑ ( s ) ⁒ 0 ( 1 e x 1 1 x + 1 2 k = 1 n B 2 ⁒ k ( 2 ⁒ k ) ! ⁒ x 2 ⁒ k 1 ) ⁒ x s 1 ⁒ e a ⁒ x ⁒ d x , ⁑ s > ( 2 ⁒ n + 1 ) , s 1 , ⁑ a > 0 .
β–Ί
§25.11(xii) a -Asymptotic Behavior
β–Ί
25.11.41 ΢ ⁑ ( s , a + 1 ) = ΢ ⁑ ( s ) s ⁒ ΢ ⁑ ( s + 1 ) ⁒ a + O ⁑ ( a 2 ) .
β–ΊSimilarly, as a in the sector | ph ⁑ a | 1 2 ⁒ Ο€ Ξ΄ ( < 1 2 ⁒ Ο€ ) , …
49: 33.10 Limiting Forms for Large ρ or Large | η |
§33.10 Limiting Forms for Large ρ or Large | Ξ· |
β–Ί
§33.10(i) Large ρ
β–Ί
§33.10(ii) Large Positive Ξ·
β–Ί
§33.10(iii) Large Negative Ξ·
50: 27.11 Asymptotic Formulas: Partial Sums
β–ΊThe behavior of a number-theoretic function f ⁑ ( n ) for large n is often difficult to determine because the function values can fluctuate considerably as n increases. … β–Ί
27.11.1 n x f ⁑ ( n ) = F ⁑ ( x ) + O ⁑ ( g ⁑ ( x ) ) ,
β–Ίwhere F ⁑ ( x ) is a known function of x , and O ⁑ ( g ⁑ ( x ) ) represents the error, a function of smaller order than F ⁑ ( x ) for all x in some prescribed range. … β–Ί
27.11.2 n x d ⁑ ( n ) = x ⁒ ln ⁑ x + ( 2 ⁒ γ 1 ) ⁒ x + O ⁑ ( x ) ,
β–Ί
27.11.3 n x d ⁑ ( n ) n = 1 2 ⁒ ( ln ⁑ x ) 2 + 2 ⁒ γ ⁒ ln ⁑ x + O ⁑ ( 1 ) ,