About the Project

large a %28or b%29 and c

AdvancedHelp

(0.005 seconds)

1—10 of 34 matching pages

1: 15.12 Asymptotic Approximations
For other extensions, see Wagner (1986), Temme (2003) and Temme (2015, Chapters 12 and 28).
2: Publications
  • D. W. Lozier, B. R. Miller and B. V. Saunders (1999) Design of a Digital Mathematical Library for Science, Technology and Education, Proceedings of the IEEE Forum on Research and Technology Advances in Digital Libraries (IEEE ADL ’99, Baltimore, Maryland, May 19, 1999). PDF
  • Q. Wang and B. V. Saunders (2005) Web-Based 3D Visualization in a Digital Library of Mathematical Functions, Proceedings of the Web3D Symposium, Bangor, UK, March 29–April 1, 2005. PDF
  • B. V. Saunders and Q. Wang (2006) From B-Spline Mesh Generation to Effective Visualizations for the NIST Digital Library of Mathematical Functions, in Curve and Surface Design, Proceedings of the Sixth International Conference on Curves and Surfaces, Avignon, France June 29–July 5, 2006, pp. 235–243. PDF
  • B. R. Miller (2007) Creating Webs of Math Using , Proceedings 6th International Congress on Industrial and Applied Mathematics, Zürich, Switzerland, July 17, 2007. PDF
  • R. Boisvert, C. W. Clark, D. Lozier and F. Olver (2011) A Special Functions Handbook for the Digital Age, Notices of the American Mathematical Society 58, 7 (2011), pp. 905–911. PDF
  • 3: Bibliography C
    Bibliography C
  • B. C. Carlson (1970) Inequalities for a symmetric elliptic integral. Proc. Amer. Math. Soc. 25 (3), pp. 698–703.
  • B. C. Carlson (1999) Toward symbolic integration of elliptic integrals. J. Symbolic Comput. 28 (6), pp. 739–753.
  • B. C. Carlson (1972b) Intégrandes à deux formes quadratiques. C. R. Acad. Sci. Paris Sér. AB 274 (15 May, 1972, Sér. A), pp. 1458–1461 (French).
  • A. Cayley (1895) An Elementary Treatise on Elliptic Functions. George Bell and Sons, London.
  • 4: Staff
  • Ronald F. Boisvert, Editor at Large, NIST

  • Hans Volkmer, University of Wisconsin, Milwaukee, Chaps. 29, 30

  • Gerhard Wolf, University of Duisberg-Essen, Chap. 28

  • Simon Ruijsenaars, University of Leeds, for Chaps. 5, 28

  • Hans Volkmer, University of Wisconsin–Milwaukee, for Chaps. 29, 30

  • 5: Bibliography B
    Bibliography B
  • L. V. Babushkina, M. K. Kerimov, and A. I. Nikitin (1988a) Algorithms for computing Bessel functions of half-integer order with complex arguments. Zh. Vychisl. Mat. i Mat. Fiz. 28 (10), pp. 1449–1460, 1597.
  • C. M. Bender and T. T. Wu (1973) Anharmonic oscillator. II. A study of perturbation theory in large order. Phys. Rev. D 7, pp. 1620–1636.
  • L. C. Biedenharn, R. L. Gluckstern, M. H. Hull, and G. Breit (1955) Coulomb functions for large charges and small velocities. Phys. Rev. (2) 97 (2), pp. 542–554.
  • T. Busch, B. Englert, K. Rzażewski, and M. Wilkens (1998) Two cold atoms in a harmonic trap. Found. Phys. 28 (4), pp. 549–559.
  • 6: Bibliography O
  • A. B. Olde Daalhuis (1998a) Hyperasymptotic solutions of higher order linear differential equations with a singularity of rank one. Proc. Roy. Soc. London Ser. A 454, pp. 1–29.
  • A. B. Olde Daalhuis (2003a) Uniform asymptotic expansions for hypergeometric functions with large parameters. I. Analysis and Applications (Singapore) 1 (1), pp. 111–120.
  • A. B. Olde Daalhuis (2003b) Uniform asymptotic expansions for hypergeometric functions with large parameters. II. Analysis and Applications (Singapore) 1 (1), pp. 121–128.
  • A. B. Olde Daalhuis (2010) Uniform asymptotic expansions for hypergeometric functions with large parameters. III. Analysis and Applications (Singapore) 8 (2), pp. 199–210.
  • F. W. J. Olver (1962) Tables for Bessel Functions of Moderate or Large Orders. National Physical Laboratory Mathematical Tables, Vol. 6. Department of Scientific and Industrial Research, Her Majesty’s Stationery Office, London.
  • 7: 17.13 Integrals
    17.13.1 c d ( q x / c ; q ) ( q x / d ; q ) ( a x / c ; q ) ( b x / d ; q ) d q x = ( 1 q ) ( q ; q ) ( a b ; q ) c d ( c / d ; q ) ( d / c ; q ) ( a ; q ) ( b ; q ) ( c + d ) ( b c / d ; q ) ( a d / c ; q ) ,
    17.13.2 c d ( q x / c ; q ) ( q x / d ; q ) ( x q α / c ; q ) ( x q β / d ; q ) d q x = Γ q ( α ) Γ q ( β ) Γ q ( α + β ) c d c + d ( c / d ; q ) ( d / c ; q ) ( q β c / d ; q ) ( q α d / c ; q ) .
    17.13.3 0 t α 1 ( t q α + β ; q ) ( t ; q ) d t = Γ ( α ) Γ ( 1 α ) Γ q ( β ) Γ q ( 1 α ) Γ q ( α + β ) ,
    17.13.4 0 t α 1 ( c t q α + β ; q ) ( c t ; q ) d q t = Γ q ( α ) Γ q ( β ) ( c q α ; q ) ( q 1 α / c ; q ) Γ q ( α + β ) ( c ; q ) ( q / c ; q ) .
    8: 1.4 Calculus of One Variable
    If f ( x ) is continuous at each point c ( a , b ) , then f ( x ) is continuous on the interval ( a , b ) and we write f C ( a , b ) . If also f ( x ) is continuous on the right at x = a , and continuous on the left at x = b , then f ( x ) is continuous on the interval [ a , b ] , and we write f ( x ) C [ a , b ] . … If f ( x ) is continuous on [ a , b ] and differentiable on ( a , b ) , then there exists a point c ( a , b ) such that … Let c ( a , b ) and assume that a c ϵ f ( x ) d x and c + ϵ b f ( x ) d x exist when 0 < ϵ < min ( c a , b c ) , but not necessarily when ϵ = 0 . … If f ( x ) C n + 1 [ a , b ] , then …
    9: 17.7 Special Cases of Higher ϕ s r Functions
    where e f = a b c q . … For continued-fraction representations of a ratio of ϕ 2 3 functions, see Cuyt et al. (2008, pp. 399–400). … where λ = c ( a b / q ) 1 2 . … where a 2 q = b c d e q n . … where q a 2 = b c d e f . …
    10: Bibliography J
  • D. S. Jones and B. D. Sleeman (2003) Differential equations and mathematical biology. Chapman & Hall/CRC Mathematical Biology and Medicine Series, Chapman & Hall/CRC, Boca Raton, FL.
  • D. S. Jones (2006) Parabolic cylinder functions of large order. J. Comput. Appl. Math. 190 (1-2), pp. 453–469.
  • W. B. Jones and W. J. Thron (1974) Numerical stability in evaluating continued fractions. Math. Comp. 28 (127), pp. 795–810.
  • S. Jorna and C. Springer (1971) Derivation of Green-type, transitional and uniform asymptotic expansions from differential equations. V. Angular oblate spheroidal wavefunctions p s ¯ n r ( η , h ) and q s ¯ n r ( η , h ) for large h . Proc. Roy. Soc. London Ser. A 321, pp. 545–555.
  • N. Joshi and A. V. Kitaev (2005) The Dirichlet boundary value problem for real solutions of the first Painlevé equation on segments in non-positive semi-axis. J. Reine Angew. Math. 583, pp. 29–86.