About the Project

kernel%20equations

AdvancedHelp

(0.001 seconds)

21—30 of 505 matching pages

21: Bibliography B
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • W. G. Bickley (1935) Some solutions of the problem of forced convection. Philos. Mag. Series 7 20, pp. 322–343.
  • S. Bochner (1952) Bessel functions and modular relations of higher type and hyperbolic differential equations. Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 1952 (Tome Supplementaire), pp. 12–20.
  • B. L. J. Braaksma and B. Meulenbeld (1967) Integral transforms with generalized Legendre functions as kernels. Compositio Math. 18, pp. 235–287.
  • 22: Bibliography M
  • A. J. MacLeod (1996b) Rational approximations, software and test methods for sine and cosine integrals. Numer. Algorithms 12 (3-4), pp. 259–272.
  • W. Magnus and S. Winkler (1966) Hill’s Equation. Interscience Tracts in Pure and Applied Mathematics, No. 20, Interscience Publishers John Wiley & Sons, New York-London-Sydney.
  • Fr. Mechel (1966) Calculation of the modified Bessel functions of the second kind with complex argument. Math. Comp. 20 (95), pp. 407–412.
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.
  • M. E. Muldoon (1970) Singular integrals whose kernels involve certain Sturm-Liouville functions. I. J. Math. Mech. 19 (10), pp. 855–873.
  • 23: 1.15 Summability Methods
    Poisson Kernel
    1.15.14 P ( r , θ ) 0 ,
    Fejér Kernel
    Poisson Kernel
    Fejér Kernel
    24: 10.68 Modulus and Phase Functions
    ker ν x = N ν ( x ) cos ϕ ν ( x ) ,
    N ν ( x ) = ( ker ν 2 x + kei ν 2 x ) 1 / 2 ,
    Equations (10.68.8)–(10.68.14) also hold with the symbols ber , bei , M , and θ replaced throughout by ker , kei , N , and ϕ , respectively. … 20) and (Eqs. …However, numerical tabulations show that if the second of these equations applies and ϕ 1 ( x ) is continuous, then ϕ 1 ( 0 ) = 3 4 π ; compare Abramowitz and Stegun (1964, p. 433).
    25: Errata
  • Equations (18.2.12), (18.2.13)
    18.2.12 K n ( x , y ) = 0 n p ( x ) p ( y ) h = k n h n k n + 1 p n + 1 ( x ) p n ( y ) p n ( x ) p n + 1 ( y ) x y , x y
    18.2.13 K n ( x , x ) = = 0 n ( p ( x ) ) 2 h = k n h n k n + 1 ( p n + 1 ( x ) p n ( x ) p n ( x ) p n + 1 ( x ) )

    The left-hand sides were updated to include the definition of the Christoffel–Darboux kernel K n ( x , y ) .

  • Additions

    Equation (16.16.5_5).

  • Equation (14.15.23)

    Four of the terms were rewritten for improved clarity.

  • Chapters 8, 20, 36

    Several new equations have been added. See (8.17.24), (20.7.34), §20.11(v), (26.12.27), (36.2.28), and (36.2.29).

  • References

    Bibliographic citations were added in §§1.13(v), 10.14, 10.21(ii), 18.15(v), 18.32, 30.16(iii), 32.13(ii), and as general references in Chapters 19, 20, 22, and 23.

  • 26: 10.71 Integrals
    In the following equations f ν , g ν is any one of the four ordered pairs given in (10.63.1), and f ^ ν , g ^ ν is either the same ordered pair or any other ordered pair in (10.63.1). …
    x N ν 2 ( x ) d x = x ( ker ν x kei ν x ker ν x kei ν x ) ,
    27: 18.2 General Orthogonal Polynomials
    Kernel property
    Kernel Polynomials
    Then the kernel polynomials
    Poisson kernel
    Instances where the Poisson kernel is nonnegative are of special interest, see Ismail (2009, Theorem 4.7.12). …
    28: 10.67 Asymptotic Expansions for Large Argument
    §10.67(i) ber ν x , bei ν x , ker ν x , kei ν x , and Derivatives
    10.67.1 ker ν x e x / 2 ( π 2 x ) 1 2 k = 0 a k ( ν ) x k cos ( x 2 + ( ν 2 + k 4 + 1 8 ) π ) ,
    The contributions of the terms in ker ν x , kei ν x , ker ν x , and kei ν x on the right-hand sides of (10.67.3), (10.67.4), (10.67.7), and (10.67.8) are exponentially small compared with the other terms, and hence can be neglected in the sense of Poincaré asymptotic expansions (§2.1(iii)). …
    10.67.14 ker x kei x ker x kei x π 2 x e x 2 ( 1 2 1 8 1 x + 9 64 2 1 x 2 39 512 1 x 3 + 75 8192 2 1 x 4 + ) ,
    10.67.15 ker x ker x + kei x kei x π 2 x e x 2 ( 1 2 + 3 8 1 x 15 64 2 1 x 2 + 45 512 1 x 3 + 315 8192 2 1 x 4 + ) ,
    29: 28.32 Mathematical Applications
    The two-dimensional wave equationKernels K can be found, for example, by separating solutions of the wave equation in other systems of orthogonal coordinates. … When the Helmholtz equation
    30: 20.13 Physical Applications
    The functions θ j ( z | τ ) , j = 1 , 2 , 3 , 4 , provide periodic solutions of the partial differential equation …with κ = i π / 4 . … Theta-function solutions to the heat diffusion equation with simple boundary conditions are discussed in Lawden (1989, pp. 1–3), and with more general boundary conditions in Körner (1989, pp. 274–281). In the singular limit τ 0 + , the functions θ j ( z | τ ) , j = 1 , 2 , 3 , 4 , become integral kernels of Feynman path integrals (distribution-valued Green’s functions); see Schulman (1981, pp. 194–195). This allows analytic time propagation of quantum wave-packets in a box, or on a ring, as closed-form solutions of the time-dependent Schrödinger equation.