About the Project

kernel%20equations

AdvancedHelp

(0.001 seconds)

11—20 of 505 matching pages

11: 12.16 Mathematical Applications
PCFs are used as basic approximating functions in the theory of contour integrals with a coalescing saddle point and an algebraic singularity, and in the theory of differential equations with two coalescing turning points; see §§2.4(vi) and 2.8(vi). … PCFs are also used in integral transforms with respect to the parameter, and inversion formulas exist for kernels containing PCFs. …
12: 13.27 Mathematical Applications
The other group elements correspond to integral operators whose kernels can be expressed in terms of Whittaker functions. … For applications of Whittaker functions to the uniform asymptotic theory of differential equations with a coalescing turning point and simple pole see §§2.8(vi) and 18.15(i).
13: 10.63 Recurrence Relations and Derivatives
§10.63(i) ber ν x , bei ν x , ker ν x , kei ν x
ker ν x , kei ν x ;
kei ν x , ker ν x .
2 ker x = ker 1 x + kei 1 x ,
Equations (10.63.6) and (10.63.7) also hold when the symbols ber and bei in (10.63.5) are replaced throughout by ker and kei , respectively. …
14: 28 Mathieu Functions and Hill’s Equation
Chapter 28 Mathieu Functions and Hill’s Equation
15: 28.10 Integral Equations
§28.10 Integral Equations
§28.10(i) Equations with Elementary Kernels
§28.10(ii) Equations with Bessel-Function Kernels
§28.10(iii) Further Equations
16: Bibliography
  • A. S. Abdullaev (1985) Asymptotics of solutions of the generalized sine-Gordon equation, the third Painlevé equation and the d’Alembert equation. Dokl. Akad. Nauk SSSR 280 (2), pp. 265–268 (Russian).
  • M. J. Ablowitz and H. Segur (1977) Exact linearization of a Painlevé transcendent. Phys. Rev. Lett. 38 (20), pp. 1103–1106.
  • A. Adelberg (1992) On the degrees of irreducible factors of higher order Bernoulli polynomials. Acta Arith. 62 (4), pp. 329–342.
  • Y. Ameur and J. Cronvall (2023) Szegő Type Asymptotics for the Reproducing Kernel in Spaces of Full-Plane Weighted Polynomials. Comm. Math. Phys. 398 (3), pp. 1291–1348.
  • D. E. Amos (1989) Repeated integrals and derivatives of K Bessel functions. SIAM J. Math. Anal. 20 (1), pp. 169–175.
  • 17: 10.75 Tables
  • Bickley et al. (1952) tabulates x n I n ( x ) or e x I n ( x ) , x n K n ( x ) or e x K n ( x ) , n = 2 ( 1 ) 20 , x = 0 (.01 or .1) 10(.1) 20, 8S; I n ( x ) , K n ( x ) , n = 0 ( 1 ) 20 , x = 0 or 0.1 ( .1 ) 20 , 10S.

  • Young and Kirk (1964) tabulates ber n x , bei n x , ker n x , kei n x , n = 0 , 1 , x = 0 ( .1 ) 10 , 15D; ber n x , bei n x , ker n x , kei n x , modulus and phase functions M n ( x ) , θ n ( x ) , N n ( x ) , ϕ n ( x ) , n = 0 , 1 , 2 , x = 0 ( .01 ) 2.5 , 8S, and n = 0 ( 1 ) 10 , x = 0 ( .1 ) 10 , 7S. Also included are auxiliary functions to facilitate interpolation of the tables for n = 0 ( 1 ) 10 for small values of x . (Concerning the phase functions see §10.68(iv).)

  • Abramowitz and Stegun (1964, Chapter 9) tabulates ber n x , bei n x , ker n x , kei n x , n = 0 , 1 , x = 0 ( .1 ) 5 , 9–10D; x n ( ker n x + ( ber n x ) ( ln x ) ) , x n ( kei n x + ( bei n x ) ( ln x ) ) , n = 0 , 1 , x = 0 ( .1 ) 1 , 9D; modulus and phase functions M n ( x ) , θ n ( x ) , N n ( x ) , ϕ n ( x ) , n = 0 , 1 , x = 0 ( .2 ) 7 , 6D; x e x / 2 M n ( x ) , θ n ( x ) ( x / 2 ) , x e x / 2 N n ( x ) , ϕ n ( x ) + ( x / 2 ) , n = 0 , 1 , 1 / x = 0 ( .01 ) 0.15 , 5D.

  • Zhang and Jin (1996, p. 322) tabulates ber x , ber x , bei x , bei x , ker x , ker x , kei x , kei x , x = 0 ( 1 ) 20 , 7S.

  • Zhang and Jin (1996, p. 323) tabulates the first 20 real zeros of ber x , ber x , bei x , bei x , ker x , ker x , kei x , kei x , 8D.

  • 18: Bibliography W
  • Z. Wang and R. Wong (2005) Linear difference equations with transition points. Math. Comp. 74 (250), pp. 629–653.
  • R. S. Ward (1987) The Nahm equations, finite-gap potentials and Lamé functions. J. Phys. A 20 (10), pp. 2679–2683.
  • H. Watanabe (1995) Solutions of the fifth Painlevé equation. I. Hokkaido Math. J. 24 (2), pp. 231–267.
  • C. S. Whitehead (1911) On a generalization of the functions ber x, bei x, ker x, kei x. Quart. J. Pure Appl. Math. 42, pp. 316–342.
  • G. Wolf (1998) On the central connection problem for the double confluent Heun equation. Math. Nachr. 195, pp. 267–276.
  • 19: 10.62 Graphs
    See accompanying text
    Figure 10.62.2: ker x , kei x , ker x , kei x , 0 x 8 . Magnify
    See accompanying text
    Figure 10.62.4: e x / 2 ker x , e x / 2 kei x , e x / 2 N ( x ) , 0 x 8 . Magnify
    20: Bibliography S
  • K. L. Sala (1989) Transformations of the Jacobian amplitude function and its calculation via the arithmetic-geometric mean. SIAM J. Math. Anal. 20 (6), pp. 1514–1528.
  • A. Sharples (1967) Uniform asymptotic forms of modified Mathieu functions. Quart. J. Mech. Appl. Math. 20 (3), pp. 365–380.
  • K. Soni (1980) Exact error terms in the asymptotic expansion of a class of integral transforms. I. Oscillatory kernels. SIAM J. Math. Anal. 11 (5), pp. 828–841.
  • J. R. Stembridge (1995) A Maple package for symmetric functions. J. Symbolic Comput. 20 (5-6), pp. 755–768.
  • F. Stenger (1993) Numerical Methods Based on Sinc and Analytic Functions. Springer Series in Computational Mathematics, Vol. 20, Springer-Verlag, New York.