About the Project

inversion formula

AdvancedHelp

(0.003 seconds)

31—40 of 56 matching pages

31: 15.4 Special Cases
β–Ί
15.4.3 F ⁑ ( 1 2 , 1 ; 3 2 ; z 2 ) = z 1 ⁒ arctan ⁑ z ,
β–Ί
15.4.4 F ⁑ ( 1 2 , 1 2 ; 3 2 ; z 2 ) = z 1 ⁒ arcsin ⁑ z ,
32: 3.3 Interpolation
β–Ί
Three-Point Formula
β–Ί
Four-Point Formula
β–Ί
Five-Point Formula
β–Ί
Six-Point Formula
β–Ί
§3.3(v) Inverse Interpolation
33: 6.10 Other Series Expansions
β–Ί
§6.10(i) Inverse Factorial Series
β–ΊFor a more general result (incomplete gamma function), and also for a result for the logarithmic integral, see Nielsen (1906a, p. 283: Formula (3) is incorrect). …
34: 19.11 Addition Theorems
β–Ί
§19.11(i) General Formulas
β–Ί β–Ί
19.11.6_5 R C ⁑ ( Ξ³ Ξ΄ , Ξ³ ) = 1 Ξ΄ ⁒ arctan ⁑ ( Ξ΄ ⁒ sin ⁑ ΞΈ ⁒ sin ⁑ Ο• ⁒ sin ⁑ ψ Ξ± 2 1 Ξ± 2 ⁒ cos ⁑ ΞΈ ⁒ cos ⁑ Ο• ⁒ cos ⁑ ψ ) .
β–Ί
§19.11(iii) Duplication Formulas
β–Ί
35: 19.21 Connection Formulas
§19.21 Connection Formulas
β–ΊThe complete cases of R F and R G have connection formulas resulting from those for the Gauss hypergeometric function (Erdélyi et al. (1953a, §2.9)). … β–ΊConnection formulas for R a ⁑ ( 𝐛 ; 𝐳 ) are given in Carlson (1977b, pp. 99, 101, and 123–124). … β–Ί
19.21.12 ( p x ) ⁒ R J ⁑ ( x , y , z , p ) + ( q x ) ⁒ R J ⁑ ( x , y , z , q ) = 3 ⁒ R F ⁑ ( x , y , z ) 3 ⁒ R C ⁑ ( ξ , η ) ,
36: 18.3 Definitions
β–Ί
  • 3.

    As given by a Rodrigues formula (18.5.5).

  • β–ΊFor representations of the polynomials in Table 18.3.1 by Rodrigues formulas, see §18.5(ii). … β–ΊIn this chapter, formulas for the Chebyshev polynomials of the second, third, and fourth kinds will not be given as extensively as those of the first kind. However, most of these formulas can be obtained by specialization of formulas for Jacobi polynomials, via (18.7.4)–(18.7.6). … β–ΊFormula (18.3.1) can be understood as a Gauss-Chebyshev quadrature, see (3.5.22), (3.5.23). …
    37: 10.22 Integrals
    β–Ί
    10.22.59 0 e i ⁒ b ⁒ t ⁒ J ΞΌ ⁑ ( a ⁒ t ) ⁒ d t = { exp ⁑ ( i ⁒ ΞΌ ⁒ arcsin ⁑ ( b / a ) ) ( a 2 b 2 ) 1 2 , 0 b < a , i ⁒ a ΞΌ ⁒ exp ⁑ ( 1 2 ⁒ ΞΌ ⁒ Ο€ ⁒ i ) ( b 2 a 2 ) 1 2 ⁒ ( b + ( b 2 a 2 ) 1 2 ) ΞΌ , 0 < a < b .
    β–Ί
    10.22.60 0 e i ⁒ b ⁒ t ⁒ Y 0 ⁑ ( a ⁒ t ) ⁒ d t = { ( 2 ⁒ i / Ο€ ) ⁒ ( a 2 b 2 ) 1 2 ⁒ arcsin ⁑ ( b / a ) , 0 b < a , ( b 2 a 2 ) 1 2 ⁒ ( 1 + 2 ⁒ i Ο€ ⁒ ln ⁑ ( a b + ( b 2 a 2 ) 1 2 ) ) , 0 < a < b .
    β–ΊHankel’s inversion theorem is given by β–Ί
    10.22.77 f ⁑ ( y ) = 0 g ⁑ ( x ) ⁒ J ν ⁑ ( x ⁒ y ) ⁒ ( x ⁒ y ) 1 2 ⁒ d x .
    β–ΊThe following two formulas are generalizations of the Hankel transform. …
    38: 1.14 Integral Transforms
    β–Ί
    Inversion
    β–Ί
    Inversion
    β–Ί
    Inversion
    β–Ί
    Inversion
    β–Ί
    Inversion
    39: 28.2 Definitions and Basic Properties
    β–ΊThe solutions of (28.2.16) are given by Ξ½ = Ο€ 1 ⁒ arccos ⁑ ( w I ⁑ ( Ο€ ; a , q ) ) . If the inverse cosine takes its principal value (§4.23(ii)), then Ξ½ = Ξ½ ^ , where 0 ⁑ Ξ½ ^ 1 . … β–Ί(28.2.9), (28.2.16), and (28.2.7) give for each solution w ⁑ ( z ) of (28.2.1) the connection formula
    40: Bibliography J
    β–Ί
  • E. Jahnke and F. Emde (1945) Tables of Functions with Formulae and Curves. 4th edition, Dover Publications, New York.
  • β–Ί
  • D. J. Jeffrey, R. M. Corless, D. E. G. Hare, and D. E. Knuth (1995) Sur l’inversion de y Ξ± ⁒ e y au moyen des nombres de Stirling associés. C. R. Acad. Sci. Paris Sér. I Math. 320 (12), pp. 1449–1452.
  • β–Ί
  • X.-S. Jin and R. Wong (1999) Asymptotic formulas for the zeros of the Meixner polynomials. J. Approx. Theory 96 (2), pp. 281–300.
  • β–Ί
  • F. Johansson (2012) Efficient implementation of the Hardy-Ramanujan-Rademacher formula. LMS J. Comput. Math. 15, pp. 341–359.