About the Project

integral equations

AdvancedHelp

(0.009 seconds)

41—50 of 215 matching pages

41: 24.7 Integral Representations
§24.7 Integral Representations
§24.7(i) Bernoulli and Euler Numbers
§24.7(ii) Bernoulli and Euler Polynomials
The following four equations hold for 0 < x < 1 . …
Mellin–Barnes Integral
42: 9.15 Mathematical Applications
Airy functions play an indispensable role in the construction of uniform asymptotic expansions for contour integrals with coalescing saddle points, and for solutions of linear second-order ordinary differential equations with a simple turning point. …
43: 22.14 Integrals
22.14.16 0 K ( k ) ln ( sn ( t , k ) ) d t = π 4 K ( k ) 1 2 K ( k ) ln k ,
22.14.17 0 K ( k ) ln ( cn ( t , k ) ) d t = π 4 K ( k ) + 1 2 K ( k ) ln ( k / k ) ,
44: 10.71 Integrals
§10.71 Integrals
§10.71(i) Indefinite Integrals
§10.71(ii) Definite Integrals
§10.71(iii) Compendia
45: 28.30 Expansions in Series of Eigenfunctions
28.30.4 f m = 1 2 π 0 2 π f ( x ) w m ( x ) d x .
46: Bibliography G
  • B. Gambier (1910) Sur les équations différentielles du second ordre et du premier degré dont l’intégrale générale est a points critiques fixes. Acta Math. 33 (1), pp. 1–55.
  • L. Gårding (1947) The solution of Cauchy’s problem for two totally hyperbolic linear differential equations by means of Riesz integrals. Ann. of Math. (2) 48 (4), pp. 785–826.
  • É. Goursat (1881) Sur l’équation différentielle linéaire, qui admet pour intégrale la série hypergéométrique. Ann. Sci. École Norm. Sup. (2) 10, pp. 3–142 (French).
  • 47: 19.16 Definitions
    19.16.9 R a ( 𝐛 ; 𝐳 ) = 1 B ( a , a ) 0 t a 1 j = 1 n ( t + z j ) b j d t = 1 B ( a , a ) 0 t a 1 j = 1 n ( 1 + t z j ) b j d t , b 1 + + b n > a > 0 , b j , z j ( , 0 ] ,
    48: 15.6 Integral Representations
    15.6.1 𝐅 ( a , b ; c ; z ) = 1 Γ ( b ) Γ ( c b ) 0 1 t b 1 ( 1 t ) c b 1 ( 1 z t ) a d t , | ph ( 1 z ) | < π ; c > b > 0 .
    15.6.2_5 𝐅 ( a , b ; c ; z ) = 1 Γ ( b ) Γ ( c b ) 0 t b 1 ( t + 1 ) a c ( t z t + 1 ) a d t , | ph ( 1 z ) | < π ; c > b > 0 .
    15.6.6 𝐅 ( a , b ; c ; z ) = 1 2 π i Γ ( a ) Γ ( b ) i i Γ ( a + t ) Γ ( b + t ) Γ ( t ) Γ ( c + t ) ( z ) t d t , | ph ( z ) | < π ; a , b 0 , 1 , 2 , .
    15.6.8 𝐅 ( a , b ; c ; z ) = 1 Γ ( c d ) 0 1 𝐅 ( a , b ; d ; z t ) t d 1 ( 1 t ) c d 1 d t , | ph ( 1 z ) | < π ; c > d > 0 .
    15.6.9 𝐅 ( a , b ; c ; z ) = 0 1 t d 1 ( 1 t ) c d 1 ( 1 z t ) a + b λ 𝐅 ( λ a , λ b d ; z t ) 𝐅 ( a + b λ , λ d c d ; ( 1 t ) z 1 z t ) d t , | ph ( 1 z ) | < π ; λ , c > d > 0 .
    49: 14.32 Methods of Computation
  • Numerical integration (§3.7) of the defining differential equations (14.2.2), (14.20.1), and (14.21.1).

  • Quadrature (§3.5) of the integral representations given in §§14.12, 14.19(iii), 14.20(iv), and 14.25; see Segura and Gil (1999) and Gil et al. (2000).

  • 50: 22.10 Maclaurin Series
    Further terms may be derived from the differential equations (22.13.13), (22.13.14), (22.13.15), or from the integral representations of the inverse functions in §22.15(ii). …