About the Project

integral%20transforms

AdvancedHelp

(0.002 seconds)

11—18 of 18 matching pages

11: Bibliography C
  • B. C. Carlson (1990) Landen Transformations of Integrals. In Asymptotic and Computational Analysis (Winnipeg, MB, 1989), R. Wong (Ed.), Lecture Notes in Pure and Appl. Math., Vol. 124, pp. 75–94.
  • R. Chelluri, L. B. Richmond, and N. M. Temme (2000) Asymptotic estimates for generalized Stirling numbers. Analysis (Munich) 20 (1), pp. 1–13.
  • N. B. Christensen (1990) Optimized fast Hankel transform filters. Geophysical Prospecting 38 (5), pp. 545–568.
  • H. S. Cohl (2010) Derivatives with respect to the degree and order of associated Legendre functions for | z | > 1 using modified Bessel functions. Integral Transforms Spec. Funct. 21 (7-8), pp. 581–588.
  • H. S. Cohl (2013b) On a generalization of the generating function for Gegenbauer polynomials. Integral Transforms Spec. Funct. 24 (10), pp. 807–816.
  • 12: Bibliography V
  • G. Valent (1986) An integral transform involving Heun functions and a related eigenvalue problem. SIAM J. Math. Anal. 17 (3), pp. 688–703.
  • R. Vidūnas (2005) Transformations of some Gauss hypergeometric functions. J. Comput. Appl. Math. 178 (1-2), pp. 473–487.
  • N. Ja. Vilenkin and A. U. Klimyk (1991) Representation of Lie Groups and Special Functions. Volume 1: Simplest Lie Groups, Special Functions and Integral Transforms. Mathematics and its Applications (Soviet Series), Vol. 72, Kluwer Academic Publishers Group, Dordrecht.
  • N. Ja. Vilenkin and A. U. Klimyk (1993) Representation of Lie Groups and Special Functions. Volume 2: Class I Representations, Special Functions, and Integral Transforms. Mathematics and its Applications (Soviet Series), Vol. 74, Kluwer Academic Publishers Group, Dordrecht.
  • H. Volkmer (2004a) Error estimates for Rayleigh-Ritz approximations of eigenvalues and eigenfunctions of the Mathieu and spheroidal wave equation. Constr. Approx. 20 (1), pp. 39–54.
  • 13: Bibliography W
  • R. S. Ward (1987) The Nahm equations, finite-gap potentials and Lamé functions. J. Phys. A 20 (10), pp. 2679–2683.
  • G. N. Watson (1910) The cubic transformation of the hypergeometric function. Quart. J. Pure and Applied Math. 41, pp. 70–79.
  • F. J. W. Whipple (1927) Some transformations of generalized hypergeometric series. Proc. London Math. Soc. (2) 26 (2), pp. 257–272.
  • J. Wimp (1964) A class of integral transforms. Proc. Edinburgh Math. Soc. (2) 14, pp. 33–40.
  • R. Wong (1982) Quadrature formulas for oscillatory integral transforms. Numer. Math. 39 (3), pp. 351–360.
  • 14: Bibliography M
  • A. J. MacLeod (1996b) Rational approximations, software and test methods for sine and cosine integrals. Numer. Algorithms 12 (3-4), pp. 259–272.
  • O. I. Marichev (1983) Handbook of Integral Transforms of Higher Transcendental Functions: Theory and Algorithmic Tables. Ellis Horwood Ltd./John Wiley & Sons, Inc, Chichester/New York.
  • J. C. Mason (1993) Chebyshev polynomials of the second, third and fourth kinds in approximation, indefinite integration, and integral transforms. In Proceedings of the Seventh Spanish Symposium on Orthogonal Polynomials and Applications (VII SPOA) (Granada, 1991), Vol. 49, pp. 169–178.
  • Fr. Mechel (1966) Calculation of the modified Bessel functions of the second kind with complex argument. Math. Comp. 20 (95), pp. 407–412.
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.
  • 15: Bibliography L
  • P. W. Lawrence, R. M. Corless, and D. J. Jeffrey (2012) Algorithm 917: complex double-precision evaluation of the Wright ω function. ACM Trans. Math. Software 38 (3), pp. Art. 20, 17.
  • D. J. Leeming (1977) An asymptotic estimate for the Bernoulli and Euler numbers. Canad. Math. Bull. 20 (1), pp. 109–111.
  • J. L. López, P. Pagola, and E. Pérez Sinusía (2013a) Asymptotics of the first Appell function F 1 with large parameters II. Integral Transforms Spec. Funct. 24 (12), pp. 982–999.
  • J. L. López, P. Pagola, and E. Pérez Sinusía (2013b) Asymptotics of the first Appell function F 1 with large parameters. Integral Transforms Spec. Funct. 24 (9), pp. 715–733.
  • J. Lund (1985) Bessel transforms and rational extrapolation. Numer. Math. 47 (1), pp. 1–14.
  • 16: Bibliography G
  • W. Gautschi (1994) Algorithm 726: ORTHPOL — a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules. ACM Trans. Math. Software 20 (1), pp. 21–62.
  • A. G. Gibbs (1973) Problem 72-21, Laplace transforms of Airy functions. SIAM Rev. 15 (4), pp. 796–798.
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • Ya. I. Granovskiĭ, I. M. Lutzenko, and A. S. Zhedanov (1992) Mutual integrability, quadratic algebras, and dynamical symmetry. Ann. Phys. 217 (1), pp. 1–20.
  • W. Groenevelt (2007) Fourier transforms related to a root system of rank 1. Transform. Groups 12 (1), pp. 77–116.
  • 17: 2.11 Remainder Terms; Stokes Phenomenon
    §2.11(vi) Direct Numerical Transformations
    A simple example is provided by Euler’s transformation3.9(ii)) applied to the asymptotic expansion for the exponential integral6.12(i)): … For example, using double precision d 20 is found to agree with (2.11.31) to 13D. However, direct numerical transformations need to be used with care. …
    18: 20.11 Generalizations and Analogs
    If both m , n are positive, then G ( m , n ) allows inversion of its arguments as a modular transformation (compare (23.15.3) and (23.15.4)): … As in §20.11(ii), the modulus k of elliptic integrals19.2(ii)), Jacobian elliptic functions (§22.2), and Weierstrass elliptic functions (§23.6(ii)) can be expanded in q -series via (20.9.1). …