About the Project

integral%20equations

AdvancedHelp

(0.004 seconds)

11—20 of 30 matching pages

11: Bibliography I
  • E. L. Ince (1926) Ordinary Differential Equations. Longmans, Green and Co., London.
  • K. Inkeri (1959) The real roots of Bernoulli polynomials. Ann. Univ. Turku. Ser. A I 37, pp. 1–20.
  • A. Iserles (1996) A First Course in the Numerical Analysis of Differential Equations. Cambridge Texts in Applied Mathematics, No. 15, Cambridge University Press, Cambridge.
  • A. R. Its, A. S. Fokas, and A. A. Kapaev (1994) On the asymptotic analysis of the Painlevé equations via the isomonodromy method. Nonlinearity 7 (5), pp. 1291–1325.
  • A. R. Its and V. Yu. Novokshënov (1986) The Isomonodromic Deformation Method in the Theory of Painlevé Equations. Lecture Notes in Mathematics, Vol. 1191, Springer-Verlag, Berlin.
  • 12: Bibliography C
  • T. W. Chaundy (1969) Elementary Differential Equations. Clarendon Press, Oxford.
  • R. Chelluri, L. B. Richmond, and N. M. Temme (2000) Asymptotic estimates for generalized Stirling numbers. Analysis (Munich) 20 (1), pp. 1–13.
  • M. Colman, A. Cuyt, and J. Van Deun (2011) Validated computation of certain hypergeometric functions. ACM Trans. Math. Software 38 (2), pp. Art. 11, 20.
  • J. N. L. Connor, P. R. Curtis, and D. Farrelly (1983) A differential equation method for the numerical evaluation of the Airy, Pearcey and swallowtail canonical integrals and their derivatives. Molecular Phys. 48 (6), pp. 1305–1330.
  • M. D. Cooper, R. H. Jeppesen, and M. B. Johnson (1979) Coulomb effects in the Klein-Gordon equation for pions. Phys. Rev. C 20 (2), pp. 696–704.
  • 13: Bibliography G
  • B. Gambier (1910) Sur les équations différentielles du second ordre et du premier degré dont l’intégrale générale est a points critiques fixes. Acta Math. 33 (1), pp. 1–55.
  • L. Gårding (1947) The solution of Cauchy’s problem for two totally hyperbolic linear differential equations by means of Riesz integrals. Ann. of Math. (2) 48 (4), pp. 785–826.
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • É. Goursat (1881) Sur l’équation différentielle linéaire, qui admet pour intégrale la série hypergéométrique. Ann. Sci. École Norm. Sup. (2) 10, pp. 3–142 (French).
  • Ya. I. Granovskiĭ, I. M. Lutzenko, and A. S. Zhedanov (1992) Mutual integrability, quadratic algebras, and dynamical symmetry. Ann. Phys. 217 (1), pp. 1–20.
  • 14: 18.40 Methods of Computation
    Usually, however, other methods are more efficient, especially the numerical solution of difference equations3.6) and the application of uniform asymptotic expansions (when available) for OP’s of large degree. … … There are many ways to implement these first two steps, noting that the expressions for α n and β n of equation (18.2.30) are of little practical numerical value, see Gautschi (2004) and Golub and Meurant (2010). … Results of low ( 2 to 3 decimal digits) precision for w ( x ) are easily obtained for N 10 to 20 . … Equation (18.40.7) provides step-histogram approximations to a x d μ ( x ) , as shown in Figure 18.40.1 for N = 12 and 120 , shown here for the repulsive Coulomb–Pollaczek OP’s of Figure 18.39.2, with the parameters as listed therein. …
    15: 7.8 Inequalities
    7.8.5 x 2 2 x 2 + 1 x 2 ( 2 x 2 + 5 ) 4 x 4 + 12 x 2 + 3 x 𝖬 ( x ) < 2 x 4 + 9 x 2 + 4 4 x 4 + 20 x 2 + 15 < x 2 + 1 2 x 2 + 3 , x 0 .
    7.8.6 0 x e a t 2 d t < 1 3 a x ( 2 e a x 2 + a x 2 2 ) , a , x > 0 .
    7.8.7 sinh x 2 x < e x 2 F ( x ) = 0 x e t 2 d t < e x 2 1 x , x > 0 .
    The function F ( x ) / 1 e 2 x 2 is strictly decreasing for x > 0 . For these and similar results for Dawson’s integral F ( x ) see Janssen (2021). …
    16: 36.5 Stokes Sets
    where x ± are the two smallest positive roots of the equationwhere u satisfies the equationHere u is the root of the equationwhere u is the root of the equationwhere u is the positive root of the equation
    17: Bibliography M
  • A. J. MacLeod (1996b) Rational approximations, software and test methods for sine and cosine integrals. Numer. Algorithms 12 (3-4), pp. 259–272.
  • W. Magnus and S. Winkler (1966) Hill’s Equation. Interscience Tracts in Pure and Applied Mathematics, No. 20, Interscience Publishers John Wiley & Sons, New York-London-Sydney.
  • Fr. Mechel (1966) Calculation of the modified Bessel functions of the second kind with complex argument. Math. Comp. 20 (95), pp. 407–412.
  • J. C. P. Miller (1946) The Airy Integral, Giving Tables of Solutions of the Differential Equation y ′′ = x y . British Association for the Advancement of Science, Mathematical Tables Part-Vol. B, Cambridge University Press, Cambridge.
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.
  • 18: Bibliography S
  • D. Schmidt and G. Wolf (1979) A method of generating integral relations by the simultaneous separability of generalized Schrödinger equations. SIAM J. Math. Anal. 10 (4), pp. 823–838.
  • A. Sharples (1967) Uniform asymptotic forms of modified Mathieu functions. Quart. J. Mech. Appl. Math. 20 (3), pp. 365–380.
  • B. D. Sleeman (1968a) Integral equations and relations for Lamé functions and ellipsoidal wave functions. Proc. Cambridge Philos. Soc. 64, pp. 113–126.
  • B. D. Sleeman (1969) Non-linear integral equations for Heun functions. Proc. Edinburgh Math. Soc. (2) 16, pp. 281–289.
  • C. Snow (1952) Hypergeometric and Legendre Functions with Applications to Integral Equations of Potential Theory. National Bureau of Standards Applied Mathematics Series, No. 19, U. S. Government Printing Office, Washington, D.C..
  • 19: Bibliography W
  • Z. Wang and R. Wong (2003) Asymptotic expansions for second-order linear difference equations with a turning point. Numer. Math. 94 (1), pp. 147–194.
  • Z. Wang and R. Wong (2005) Linear difference equations with transition points. Math. Comp. 74 (250), pp. 629–653.
  • R. S. Ward (1987) The Nahm equations, finite-gap potentials and Lamé functions. J. Phys. A 20 (10), pp. 2679–2683.
  • H. Watanabe (1995) Solutions of the fifth Painlevé equation. I. Hokkaido Math. J. 24 (2), pp. 231–267.
  • G. Wolf (1998) On the central connection problem for the double confluent Heun equation. Math. Nachr. 195, pp. 267–276.
  • 20: Bibliography B
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • A. P. Bassom, P. A. Clarkson, A. C. Hicks, and J. B. McLeod (1992) Integral equations and exact solutions for the fourth Painlevé equation. Proc. Roy. Soc. London Ser. A 437, pp. 1–24.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • W. G. Bickley (1935) Some solutions of the problem of forced convection. Philos. Mag. Series 7 20, pp. 322–343.
  • S. Bochner (1952) Bessel functions and modular relations of higher type and hyperbolic differential equations. Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 1952 (Tome Supplementaire), pp. 12–20.