About the Project

integer%20parameters

AdvancedHelp

(0.003 seconds)

11—20 of 26 matching pages

11: 18.40 Methods of Computation
A simple set of choices is spelled out in Gordon (1968) which gives a numerically stable algorithm for direct computation of the recursion coefficients in terms of the moments, followed by construction of the J-matrix and quadrature weights and abscissas, and we will follow this approach: Let N be a positive integer and define …
18.40.2 a 1 = μ 0 , a n = P 1 , n + 1 P 1 , n P 1 , n 1 , n = 2 , , 2 N + 3 ,
18.40.3 α 0 = a 2 , α n = a 2 n + 1 + a 2 n + 2 , β n = a 2 n a 2 n + 1 , n = 1 , , N .
Results of low ( 2 to 3 decimal digits) precision for w ( x ) are easily obtained for N 10 to 20 . … Equation (18.40.7) provides step-histogram approximations to a x d μ ( x ) , as shown in Figure 18.40.1 for N = 12 and 120 , shown here for the repulsive Coulomb–Pollaczek OP’s of Figure 18.39.2, with the parameters as listed therein. …
12: 8.17 Incomplete Beta Functions
Throughout §§8.17 and 8.18 we assume that a > 0 , b > 0 , and 0 x 1 . …
8.17.4 I x ( a , b ) = 1 I 1 x ( b , a ) .
With a > 0 , b > 0 , and 0 < x < 1 , …
8.17.13 ( a + b ) I x ( a , b ) = a I x ( a + 1 , b ) + b I x ( a , b + 1 ) ,
8.17.24 I x ( m , n ) = ( 1 x ) n j = m ( n + j 1 j ) x j , m , n positive integers; 0 x < 1 .
13: Bibliography F
  • S. Farid Khwaja and A. B. Olde Daalhuis (2014) Uniform asymptotic expansions for hypergeometric functions with large parameters IV. Anal. Appl. (Singap.) 12 (6), pp. 667–710.
  • FDLIBM (free C library)
  • S. Fempl (1960) Sur certaines sommes des intégral-cosinus. Bull. Soc. Math. Phys. Serbie 12, pp. 13–20 (French).
  • H. E. Fettis and J. C. Caslin (1964) Tables of Elliptic Integrals of the First, Second, and Third Kind. Technical report Technical Report ARL 64-232, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio.
  • G. Freud (1969) On weighted polynomial approximation on the whole real axis. Acta Math. Acad. Sci. Hungar. 20, pp. 223–225.
  • 14: 12.10 Uniform Asymptotic Expansions for Large Parameter
    §12.10 Uniform Asymptotic Expansions for Large Parameter
    §12.10(vi) Modifications of Expansions in Elementary Functions
    Modified Expansions
    15: 26.12 Plane Partitions
    A plane partition, π , of a positive integer n , is a partition of n in which the parts have been arranged in a 2-dimensional array that is weakly decreasing (nonincreasing) across rows and down columns. …
    26.12.20 π × × q | π | = k = 1 1 ( 1 q k ) k ,
    26.12.21 π B ( r , s , t ) q | π | = ( h , j , k ) B ( r , s , t ) 1 q h + j + k 1 1 q h + j + k 2 = h = 1 r j = 1 s 1 q h + j + t 1 1 q h + j 1 ,
    26.12.22 π B ( r , r , t ) π  symmetric q | π | = h = 1 r 1 q 2 h + t 1 1 q 2 h 1 1 h < j r 1 q 2 ( h + j + t 1 ) 1 q 2 ( h + j 1 ) .
    26.12.24 π B ( r , r , r ) π  descending plane partition q | π | = 1 h < j r 1 q r + h + j 1 1 q 2 h + j 1 .
    16: 20.11 Generalizations and Analogs
    For relatively prime integers m , n with n > 0 and m n even, the Gauss sum G ( m , n ) is defined by
    20.11.1 G ( m , n ) = k = 0 n 1 e π i k 2 m / n ;
    20.11.3 f ( a , b ) = n = a n ( n + 1 ) / 2 b n ( n 1 ) / 2 ,
    20.11.4 f ( a , b ) = θ 3 ( z | τ ) .
    20.11.8 φ m , n ( z , q ) = θ n ( 0 , q ) θ m ( z , q ) θ m ( 0 , q ) θ n ( z , q ) , m , n = 2 , 3 , 4 .
    17: 27.2 Functions
    Euclid’s Elements (Euclid (1908, Book IX, Proposition 20)) gives an elegant proof that there are infinitely many primes. …They tend to thin out among the large integers, but this thinning out is not completely regular. … the sum of the k th powers of the positive integers m n that are relatively prime to n . … is the sum of the α th powers of the divisors of n , where the exponent α can be real or complex. …is the number of k -tuples of integers n whose greatest common divisor is relatively prime to n . …
    18: 26.9 Integer Partitions: Restricted Number and Part Size
    §26.9 Integer Partitions: Restricted Number and Part Size
    §26.9(i) Definitions
    §26.9(ii) Generating Functions
    §26.9(iii) Recurrence Relations
    §26.9(iv) Limiting Form
    19: 25.12 Polylogarithms
    25.12.1 Li 2 ( z ) n = 1 z n n 2 , | z | 1 .
    25.12.5 Li 2 ( z m ) = m k = 0 m 1 Li 2 ( z e 2 π i k / m ) , m = 1 , 2 , 3 , , | z | < 1 .
    See accompanying text
    Figure 25.12.1: Dilogarithm function Li 2 ( x ) , 20 x < 1 . Magnify
    See accompanying text
    Figure 25.12.2: Absolute value of the dilogarithm function | Li 2 ( x + i y ) | , 20 x 20 , 20 y 20 . … Magnify 3D Help
    25.12.10 Li s ( z ) = n = 1 z n n s .
    20: 36.2 Catastrophes and Canonical Integrals
    36.2.1 Φ K ( t ; 𝐱 ) = t K + 2 + m = 1 K x m t m .
    36.2.22 Ψ 2 K ( 𝐱 ) = Ψ 2 K ( 𝐱 ) , x 2 m + 1 = x 2 m + 1 , x 2 m = x 2 m .
    36.2.23 Ψ 2 K + 1 ( 𝐱 ) = Ψ 2 K + 1 ( 𝐱 ) ¯ , x 2 m + 1 = x 2 m + 1 , x 2 m = x 2 m .
    36.2.28 Ψ ( E ) ( 0 , 0 , z ) = Ψ ( E ) ( 0 , 0 , z ) ¯ = 2 π π z 27 exp ( 2 27 i z 3 ) ( J 1 / 6 ( 2 27 z 3 ) + i J 1 / 6 ( 2 27 z 3 ) ) , z 0 ,
    36.2.29 Ψ ( H ) ( 0 , 0 , z ) = Ψ ( H ) ( 0 , 0 , z ) ¯ = 2 1 / 3 3 exp ( 1 27 i z 3 ) Ψ ( E ) ( 0 , 0 , z 2 2 / 3 ) , < z < .