About the Project

infinite integrals

AdvancedHelp

(0.004 seconds)

11—20 of 72 matching pages

11: 1.9 Calculus of a Complex Variable
β–Ί
1.9.28 C f ⁑ ( z ) ⁒ d z = a b f ⁑ ( z ⁑ ( t ) ) ⁒ ( x ⁑ ( t ) + i ⁒ y ⁑ ( t ) ) ⁒ d t ,
β–ΊIf f ⁑ ( z ⁑ ( t 0 ) ) = , a t 0 b , then the integral is defined analogously to the infinite integrals in §1.4(v). …
12: 10.71 Integrals
β–ΊFor infinite double integrals involving Kelvin functions see Prudnikov et al. (1986b, pp. 630–631). …
13: Bibliography S
β–Ί
  • H. Shanker (1940a) On integral representation of Weber’s parabolic cylinder function and its expansion into an infinite series. J. Indian Math. Soc. (N. S.) 4, pp. 34–38.
  • β–Ί
  • A. Sidi (1997) Computation of infinite integrals involving Bessel functions of arbitrary order by the D ¯ -transformation. J. Comput. Appl. Math. 78 (1), pp. 125–130.
  • 14: 10.43 Integrals
    β–Ί
    §10.43(ii) Integrals over the Intervals ( 0 , x ) and ( x , )
    β–ΊFor infinite integrals of triple products of modified and unmodified Bessel functions, see Gervois and Navelet (1984, 1985a, 1985b, 1986a, 1986b). …
    15: 2.10 Sums and Sequences
    β–Ί
  • (c)

    The first infinite integral in (2.10.2) converges.

  • 16: 6.13 Zeros
    β–Ί Ci ⁑ ( x ) and si ⁑ ( x ) each have an infinite number of positive real zeros, which are denoted by c k , s k , respectively, arranged in ascending order of absolute value for k = 0 , 1 , 2 , . …
    17: 25.16 Mathematical Applications
    β–Ί
    25.16.6 H ⁑ ( s ) = ΢ ⁑ ( s ) + γ ⁒ ΢ ⁑ ( s ) + 1 2 ⁒ ΢ ⁑ ( s + 1 ) + r = 1 k ΢ ⁑ ( 1 2 ⁒ r ) ⁒ ΢ ⁑ ( s + 2 ⁒ r ) + n = 1 1 n s ⁒ n B ~ 2 ⁒ k + 1 ⁑ ( x ) x 2 ⁒ k + 2 ⁒ d x ,
    β–Ί
    25.16.7 H ⁑ ( s ) = 1 2 ⁒ ΢ ⁑ ( s + 1 ) + ΢ ⁑ ( s ) s 1 r = 1 k ( s + 2 ⁒ r 2 2 ⁒ r 1 ) ⁒ ΢ ⁑ ( 1 2 ⁒ r ) ⁒ ΢ ⁑ ( s + 2 ⁒ r ) ( s + 2 ⁒ k 2 ⁒ k + 1 ) ⁒ n = 1 1 n ⁒ n B ~ 2 ⁒ k + 1 ⁑ ( x ) x s + 2 ⁒ k + 1 ⁒ d x .
    18: 13.4 Integral Representations
    β–Ί
    13.4.2 𝐌 ⁑ ( a , b , z ) = 1 Ξ“ ⁑ ( b c ) ⁒ 0 1 𝐌 ⁑ ( a , c , z ⁒ t ) ⁒ t c 1 ⁒ ( 1 t ) b c 1 ⁒ d t , ⁑ b > ⁑ c > 0 ,
    β–Ί
    13.4.6 U ⁑ ( a , b , z ) = ( 1 ) n ⁒ z 1 b n Ξ“ ⁑ ( 1 + a b ) ⁒ 0 𝐌 ⁑ ( b a , b , t ) ⁒ e t ⁒ t b + n 1 t + z ⁒ d t , | ph ⁑ z | < Ο€ , n = 0 , 1 , 2 , , ⁑ b < n < 1 + ⁑ ( a b ) ,
    19: 10.22 Integrals
    β–Ί
    §10.22(iii) Integrals over the Interval ( x , )
    β–ΊAdditional infinite integrals over the product of three Bessel functions (including modified Bessel functions) are given in Gervois and Navelet (1984, 1985a, 1985b, 1986a, 1986b). …
    20: 2.3 Integrals of a Real Variable
    β–Ί
    2.3.1 0 e x ⁒ t ⁒ q ⁑ ( t ) ⁒ d t
    β–Ί
    2.3.4 a b e i ⁒ x ⁒ t ⁒ q ⁑ ( t ) ⁒ d t e i ⁒ a ⁒ x ⁒ s = 0 q ( s ) ⁑ ( a ) ⁒ ( i x ) s + 1 e i ⁒ b ⁒ x ⁒ s = 0 q ( s ) ⁑ ( b ) ⁒ ( i x ) s + 1 , x + .
    β–ΊAlternatively, assume b = , q ⁑ ( t ) is infinitely differentiable on [ a , ) , and each of the integrals e i ⁒ x ⁒ t ⁒ q ( s ) ⁑ ( t ) ⁒ d t , s = 0 , 1 , 2 , , converges as t uniformly for all sufficiently large x . … β–Ί
    2.3.5 a e i ⁒ x ⁒ t ⁒ q ⁑ ( t ) ⁒ d t e i ⁒ a ⁒ x ⁒ s = 0 q ( s ) ⁑ ( a ) ⁒ ( i x ) s + 1 , x + .
    β–ΊAssume that q ⁑ ( t ) again has the expansion (2.3.7) and this expansion is infinitely differentiable, q ⁑ ( t ) is infinitely differentiable on ( 0 , ) , and each of the integrals e i ⁒ x ⁒ t ⁒ q ( s ) ⁑ ( t ) ⁒ d t , s = 0 , 1 , 2 , , converges at t = , uniformly for all sufficiently large x . …