About the Project

in the complex plane

AdvancedHelp

(0.006 seconds)

11—20 of 123 matching pages

11: 35.3 Multivariate Gamma and Beta Functions
35.3.2 Γ m ( s 1 , , s m ) = 𝛀 etr ( 𝐗 ) | 𝐗 | s m 1 2 ( m + 1 ) j = 1 m 1 | ( 𝐗 ) j | s j s j + 1 d 𝐗 , s j , ( s j ) > 1 2 ( j 1 ) , j = 1 , , m .
12: 9.17 Methods of Computation
Among the integral representations of the Airy functions the Stieltjes transform (9.10.18) furnishes a way of computing Ai ( z ) in the complex plane, once values of this function can be generated on the positive real axis. …
13: 22.10 Maclaurin Series
The radius of convergence is the distance to the origin from the nearest pole in the complex k -plane in the case of (22.10.4)–(22.10.6), or complex k -plane in the case of (22.10.7)–(22.10.9); see §22.17. …
14: 19.21 Connection Formulas
19.21.1 R F ( 0 , z + 1 , z ) R D ( 0 , z + 1 , 1 ) + R D ( 0 , z + 1 , z ) R F ( 0 , z + 1 , 1 ) = 3 π / ( 2 z ) , z ( , 0 ] .
15: 8.13 Zeros
For information on the distribution and computation of zeros of γ ( a , λ a ) and Γ ( a , λ a ) in the complex λ -plane for large values of the positive real parameter a see Temme (1995a). … When x > x n a pair of conjugate trajectories emanate from the point a = a n in the complex a -plane. …
16: 4.13 Lambert W -Function
4.13.5_1 ( W 0 ( z ) z ) a = e a W 0 ( z ) = n = 0 a ( n + a ) n 1 n ! ( z ) n , | z | < e 1 , a .
17: 19.26 Addition Theorems
19.26.17 α R C ( β , α + β ) + β R C ( α , α + β ) = π / 2 , α , β ( , 0 ) , α + β > 0 .
18: 35.7 Gaussian Hypergeometric Function of Matrix Argument
35.7.2 P ν ( γ , δ ) ( 𝐓 ) = Γ m ( γ + ν + 1 2 ( m + 1 ) ) Γ m ( γ + 1 2 ( m + 1 ) ) F 1 2 ( ν , γ + δ + ν + 1 2 ( m + 1 ) γ + 1 2 ( m + 1 ) ; 𝐓 ) , 𝟎 < 𝐓 < 𝐈 ; γ , δ , ν ; ( γ ) > 1 .
19: Bibliography G
  • I. Gargantini and P. Henrici (1967) A continued fraction algorithm for the computation of higher transcendental functions in the complex plane. Math. Comp. 21 (97), pp. 18–29.
  • V. I. Gromak, I. Laine, and S. Shimomura (2002) Painlevé Differential Equations in the Complex Plane. Studies in Mathematics, Vol. 28, Walter de Gruyter & Co., Berlin-New York.
  • 20: Bibliography O
  • F. W. J. Olver (1978) General connection formulae for Liouville-Green approximations in the complex plane. Philos. Trans. Roy. Soc. London Ser. A 289, pp. 501–548.