About the Project

imaginary-modulus%20transformations

AdvancedHelp

(0.004 seconds)

11—20 of 279 matching pages

11: 9.9 Zeros
9.9.14 β k = e π i / 3 T ( 3 8 π ( 4 k 1 ) + 3 4 i ln 2 ) ,
9.9.15 Bi ( β k ) = ( 1 ) k 2 e π i / 6 V ( 3 8 π ( 4 k 1 ) + 3 4 i ln 2 ) ,
9.9.16 β k = e π i / 3 U ( 3 8 π ( 4 k 3 ) + 3 4 i ln 2 ) ,
9.9.17 Bi ( β k ) = ( 1 ) k 1 2 e π i / 6 W ( 3 8 π ( 4 k 3 ) + 3 4 i ln 2 ) .
Table 9.9.3: Complex zeros of Bi .
e π i / 3 β k Bi ( β k )
12: 9.6 Relations to Other Functions
9.6.2 Ai ( z ) = π 1 z / 3 K ± 1 / 3 ( ζ ) = 1 3 z ( I 1 / 3 ( ζ ) I 1 / 3 ( ζ ) ) = 1 2 z / 3 e 2 π i / 3 H 1 / 3 ( 1 ) ( ζ e π i / 2 ) = 1 2 z / 3 e π i / 3 H 1 / 3 ( 1 ) ( ζ e π i / 2 ) = 1 2 z / 3 e 2 π i / 3 H 1 / 3 ( 2 ) ( ζ e π i / 2 ) = 1 2 z / 3 e π i / 3 H 1 / 3 ( 2 ) ( ζ e π i / 2 ) ,
9.6.3 Ai ( z ) = π 1 ( z / 3 ) K ± 2 / 3 ( ζ ) = ( z / 3 ) ( I 2 / 3 ( ζ ) I 2 / 3 ( ζ ) ) = 1 2 ( z / 3 ) e π i / 6 H 2 / 3 ( 1 ) ( ζ e π i / 2 ) = 1 2 ( z / 3 ) e 5 π i / 6 H 2 / 3 ( 1 ) ( ζ e π i / 2 ) = 1 2 ( z / 3 ) e π i / 6 H 2 / 3 ( 2 ) ( ζ e π i / 2 ) = 1 2 ( z / 3 ) e 5 π i / 6 H 2 / 3 ( 2 ) ( ζ e π i / 2 ) ,
9.6.4 Bi ( z ) = z / 3 ( I 1 / 3 ( ζ ) + I 1 / 3 ( ζ ) ) = 1 2 z / 3 ( e π i / 6 H 1 / 3 ( 1 ) ( ζ e π i / 2 ) + e π i / 6 H 1 / 3 ( 2 ) ( ζ e π i / 2 ) ) = 1 2 z / 3 ( e π i / 6 H 1 / 3 ( 1 ) ( ζ e π i / 2 ) + e π i / 6 H 1 / 3 ( 2 ) ( ζ e π i / 2 ) ) ,
9.6.5 Bi ( z ) = ( z / 3 ) ( I 2 / 3 ( ζ ) + I 2 / 3 ( ζ ) ) = 1 2 ( z / 3 ) ( e π i / 3 H 2 / 3 ( 1 ) ( ζ e π i / 2 ) + e π i / 3 H 2 / 3 ( 2 ) ( ζ e π i / 2 ) ) = 1 2 ( z / 3 ) ( e π i / 3 H 2 / 3 ( 1 ) ( ζ e π i / 2 ) + e π i / 3 H 2 / 3 ( 2 ) ( ζ e π i / 2 ) ) ,
9.6.6 Ai ( z ) = ( z / 3 ) ( J 1 / 3 ( ζ ) + J 1 / 3 ( ζ ) ) = 1 2 z / 3 ( e π i / 6 H 1 / 3 ( 1 ) ( ζ ) + e π i / 6 H 1 / 3 ( 2 ) ( ζ ) ) = 1 2 z / 3 ( e π i / 6 H 1 / 3 ( 1 ) ( ζ ) + e π i / 6 H 1 / 3 ( 2 ) ( ζ ) ) ,
13: 15.12 Asymptotic Approximations
15.12.9 ( z + 1 ) 3 λ / 2 ( 2 λ ) c 1 𝐅 ( a + λ , b + 2 λ c ; z ) = λ 1 / 3 ( e π i ( a c + λ + ( 1 / 3 ) ) Ai ( e 2 π i / 3 λ 2 / 3 β 2 ) + e π i ( c a λ ( 1 / 3 ) ) Ai ( e 2 π i / 3 λ 2 / 3 β 2 ) ) ( a 0 ( ζ ) + O ( λ 1 ) ) + λ 2 / 3 ( e π i ( a c + λ + ( 2 / 3 ) ) Ai ( e 2 π i / 3 λ 2 / 3 β 2 ) + e π i ( c a λ ( 2 / 3 ) ) Ai ( e 2 π i / 3 λ 2 / 3 β 2 ) ) ( a 1 ( ζ ) + O ( λ 1 ) ) ,
By combination of the foregoing results of this subsection with the linear transformations of §15.8(i) and the connection formulas of §15.10(ii), similar asymptotic approximations for F ( a + e 1 λ , b + e 2 λ ; c + e 3 λ ; z ) can be obtained with e j = ± 1 or 0 , j = 1 , 2 , 3 . …
14: 10.61 Definitions and Basic Properties
10.61.1 ber ν x + i bei ν x = J ν ( x e 3 π i / 4 ) = e ν π i J ν ( x e π i / 4 ) = e ν π i / 2 I ν ( x e π i / 4 ) = e 3 ν π i / 2 I ν ( x e 3 π i / 4 ) ,
10.61.2 ker ν x + i kei ν x = e ν π i / 2 K ν ( x e π i / 4 ) = 1 2 π i H ν ( 1 ) ( x e 3 π i / 4 ) = 1 2 π i e ν π i H ν ( 2 ) ( x e π i / 4 ) .
15: 19.7 Connection Formulas
Reciprocal-Modulus Transformation
Imaginary-Modulus Transformation
Imaginary-Argument Transformation
For two further transformations of this type see Erdélyi et al. (1953b, p. 316). …
16: 14.23 Values on the Cut
14.23.5 𝖰 ν μ ( x ) = 1 2 Γ ( ν + μ + 1 ) ( e μ π i / 2 𝑸 ν μ ( x + i 0 ) + e μ π i / 2 𝑸 ν μ ( x i 0 ) ) ,
14.23.6 𝖰 ν μ ( x ) = e μ π i / 2 Γ ( ν + μ + 1 ) 𝑸 ν μ ( x ± i 0 ) ± 1 2 π i e ± μ π i / 2 P ν μ ( x ± i 0 ) .
14.23.7 𝖰 ^ 1 2 + i τ μ ( x ) = 1 2 e 3 μ π i / 2 Q 1 2 + i τ μ ( x i 0 ) + 1 2 e 3 μ π i / 2 Q 1 2 i τ μ ( x + i 0 ) .
17: 36.2 Catastrophes and Canonical Integrals
36.2.6 Ψ ( E ) ( 𝐱 ) = 2 π / 3 exp ( i ( 4 27 z 3 + 1 3 x z 1 4 π ) ) exp ( 7 π i / 12 ) exp ( π i / 12 ) exp ( i ( u 6 + 2 z u 4 + ( z 2 + x ) u 2 + y 2 12 u 2 ) ) d u ,
36.2.8 Ψ ( H ) ( 𝐱 ) = 4 π / 6 exp ( i ( 1 27 z 3 + 1 6 z ( y + x ) + 1 4 π ) ) exp ( 5 π i / 12 ) exp ( π i / 12 ) exp ( i ( 2 u 6 + 2 z u 4 + ( 1 2 z 2 + x + y ) u 2 ( y x ) 2 24 u 2 ) ) d u ,
36.2.9 Ψ ( H ) ( 𝐱 ) = 2 π 3 1 / 3 exp ( 5 π i / 6 ) exp ( π i / 6 ) exp ( i ( s 3 + x s ) ) Ai ( z s + y 3 1 / 3 ) d s .
36.2.28 Ψ ( E ) ( 0 , 0 , z ) = Ψ ( E ) ( 0 , 0 , z ) ¯ = 2 π π z 27 exp ( 2 27 i z 3 ) ( J 1 / 6 ( 2 27 z 3 ) + i J 1 / 6 ( 2 27 z 3 ) ) , z 0 ,
36.2.29 Ψ ( H ) ( 0 , 0 , z ) = Ψ ( H ) ( 0 , 0 , z ) ¯ = 2 1 / 3 3 exp ( 1 27 i z 3 ) Ψ ( E ) ( 0 , 0 , z 2 2 / 3 ) , < z < .
18: 9.5 Integral Representations
9.5.3 Bi ( x ) = 1 π 0 exp ( 1 3 t 3 + x t ) d t + 1 π 0 sin ( 1 3 t 3 + x t ) d t .
9.5.4 Ai ( z ) = 1 2 π i e π i / 3 e π i / 3 exp ( 1 3 t 3 z t ) d t ,
9.5.5 Bi ( z ) = 1 2 π e π i / 3 exp ( 1 3 t 3 z t ) d t + 1 2 π e π i / 3 exp ( 1 3 t 3 z t ) d t .
19: 9.18 Tables
  • Zhang and Jin (1996, p. 337) tabulates Ai ( x ) , Ai ( x ) , Bi ( x ) , Bi ( x ) for x = 0 ( 1 ) 20 to 8S and for x = 20 ( 1 ) 0 to 9D.

  • Harvard University (1945) tabulates the real and imaginary parts of h 1 ( z ) , h 1 ( z ) , h 2 ( z ) , h 2 ( z ) for x 0 z x 0 , 0 z y 0 , | x 0 + i y 0 | < 6.1 , with interval 0.1 in z and z . Precision is 8D. Here h 1 ( z ) = 2 4 / 3 3 1 / 6 i Ai ( e π i / 3 z ) , h 2 ( z ) = 2 4 / 3 3 1 / 6 i Ai ( e π i / 3 z ) .

  • Miller (1946) tabulates a k , Ai ( a k ) , a k , Ai ( a k ) , k = 1 ( 1 ) 50 ; b k , Bi ( b k ) , b k , Bi ( b k ) , k = 1 ( 1 ) 20 . Precision is 8D. Entries for k = 1 ( 1 ) 20 are reproduced in Abramowitz and Stegun (1964, Chapter 10).

  • Sherry (1959) tabulates a k , Ai ( a k ) , a k , Ai ( a k ) , k = 1 ( 1 ) 50 ; 20S.

  • Zhang and Jin (1996, p. 339) tabulates a k , Ai ( a k ) , a k , Ai ( a k ) , b k , Bi ( b k ) , b k , Bi ( b k ) , k = 1 ( 1 ) 20 ; 8D.

  • 20: 10.69 Uniform Asymptotic Expansions for Large Order
    10.69.2 ber ν ( ν x ) + i bei ν ( ν x ) e ν ξ ( 2 π ν ξ ) 1 / 2 ( x e 3 π i / 4 1 + ξ ) ν k = 0 U k ( ξ 1 ) ν k ,
    10.69.3 ker ν ( ν x ) + i kei ν ( ν x ) e ν ξ ( π 2 ν ξ ) 1 / 2 ( x e 3 π i / 4 1 + ξ ) ν k = 0 ( 1 ) k U k ( ξ 1 ) ν k ,
    10.69.4 ber ν ( ν x ) + i bei ν ( ν x ) e ν ξ x ( ξ 2 π ν ) 1 / 2 ( x e 3 π i / 4 1 + ξ ) ν k = 0 V k ( ξ 1 ) ν k ,
    10.69.5 ker ν ( ν x ) + i kei ν ( ν x ) e ν ξ x ( π ξ 2 ν ) 1 / 2 ( x e 3 π i / 4 1 + ξ ) ν k = 0 ( 1 ) k V k ( ξ 1 ) ν k ,