About the Project

hyperbolic%20umbilic%20bifurcation%20set

AdvancedHelp

(0.003 seconds)

11—20 of 631 matching pages

11: 36.10 Differential Equations
In terms of the normal forms (36.2.2) and (36.2.3), the Ψ ( U ) ( 𝐱 ) satisfy the following operator equations …
36.10.14 3 ( 2 Ψ ( E ) x 2 2 Ψ ( E ) y 2 ) + 2 i z Ψ ( E ) x x Ψ ( E ) = 0 .
12: 36.11 Leading-Order Asymptotics
§36.11 Leading-Order Asymptotics
and far from the bifurcation set, the cuspoid canonical integrals are approximated by …
36.11.4 Ψ 3 ( x , 0 , 0 ) = 2 π ( 5 | x | 3 ) 1 / 8 { exp ( 2 2 ( x / 5 ) 5 / 4 ) ( cos ( 2 2 ( x / 5 ) 5 / 4 1 8 π ) + o ( 1 ) ) , x + , cos ( 4 ( | x | / 5 ) 5 / 4 1 4 π ) + o ( 1 ) , x .
36.11.7 Ψ ( E ) ( 0 , 0 , z ) = π z ( i + 3 exp ( 4 27 i z 3 ) + o ( 1 ) ) , z ± ,
36.11.8 Ψ ( H ) ( 0 , 0 , z ) = 2 π z ( 1 i 3 exp ( 1 27 i z 3 ) + o ( 1 ) ) , z ± .
13: 36.7 Zeros
§36.7(iii) Elliptic Umbilic Canonical Integral
The zeros are lines in 𝐱 = ( x , y , z ) space where ph Ψ ( E ) ( 𝐱 ) is undetermined. …Near z = z n , and for small x and y , the modulus | Ψ ( E ) ( 𝐱 ) | has the symmetry of a lattice with a rhombohedral unit cell that has a mirror plane and an inverse threefold axis whose z and x repeat distances are given by …
§36.7(iv) Swallowtail and Hyperbolic Umbilic Canonical Integrals
The zeros of these functions are curves in 𝐱 = ( x , y , z ) space; see Nye (2007) for Φ 3 and Nye (2006) for Φ ( H ) .
14: 4.40 Integrals
§4.40 Integrals
§4.40(ii) Indefinite Integrals
§4.40(iii) Definite Integrals
§4.40(iv) Inverse Hyperbolic Functions
Extensive compendia of indefinite and definite integrals of hyperbolic functions include Apelblat (1983, pp. 96–109), Bierens de Haan (1939), Gröbner and Hofreiter (1949, pp. 139–160), Gröbner and Hofreiter (1950, pp. 160–167), Gradshteyn and Ryzhik (2000, Chapters 2–4), and Prudnikov et al. (1986a, §§1.4, 1.8, 2.4, 2.8).
15: Bibliography B
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • A. Bañuelos and R. A. Depine (1980) A program for computing the Riemann zeta function for complex argument. Comput. Phys. Comm. 20 (3), pp. 441–445.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • W. G. Bickley (1935) Some solutions of the problem of forced convection. Philos. Mag. Series 7 20, pp. 322–343.
  • S. Bochner (1952) Bessel functions and modular relations of higher type and hyperbolic differential equations. Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 1952 (Tome Supplementaire), pp. 12–20.
  • 16: 36.9 Integral Identities
    §36.9 Integral Identities
    36.9.1 | Ψ 1 ( x ) | 2 = 2 5 / 3 0 Ψ 1 ( 2 2 / 3 ( 3 u 2 + x ) ) d u ;
    36.9.7 | Ψ 3 ( x , y , z ) | 2 = 2 7 / 4 5 1 / 4 0 ( e 2 i u ( u 4 + z u 2 + x ) Ψ 2 ( 2 7 / 4 5 1 / 4 y u 3 / 4 , 2 u 5 ( 3 z + 10 u 2 ) ) ) d u u 1 / 4 .
    36.9.8 | Ψ ( H ) ( x , y , z ) | 2 = 8 π 2 ( 2 9 ) 1 / 3 Ai ( ( 4 3 ) 1 / 3 ( x + z v + 3 u 2 ) ) Ai ( ( 4 3 ) 1 / 3 ( y + z u + 3 v 2 ) ) d u d v .
    36.9.9 | Ψ ( E ) ( x , y , z ) | 2 = 8 π 2 3 2 / 3 0 0 2 π ( Ai ( 1 3 1 / 3 ( x + i y + 2 z u exp ( i θ ) + 3 u 2 exp ( 2 i θ ) ) ) Bi ( 1 3 1 / 3 ( x i y + 2 z u exp ( i θ ) + 3 u 2 exp ( 2 i θ ) ) ) ) u d u d θ .
    17: 36.8 Convergent Series Expansions
    §36.8 Convergent Series Expansions
    36.8.3 3 2 / 3 4 π 2 Ψ ( H ) ( 3 1 / 3 𝐱 ) = Ai ( x ) Ai ( y ) n = 0 ( 3 1 / 3 i z ) n c n ( x ) c n ( y ) n ! + Ai ( x ) Ai ( y ) n = 2 ( 3 1 / 3 i z ) n c n ( x ) d n ( y ) n ! + Ai ( x ) Ai ( y ) n = 2 ( 3 1 / 3 i z ) n d n ( x ) c n ( y ) n ! + Ai ( x ) Ai ( y ) n = 1 ( 3 1 / 3 i z ) n d n ( x ) d n ( y ) n ! ,
    36.8.4 Ψ ( E ) ( 𝐱 ) = 2 π 2 ( 2 3 ) 2 / 3 n = 0 ( i ( 2 / 3 ) 2 / 3 z ) n n ! ( f n ( x + i y 12 1 / 3 , x i y 12 1 / 3 ) ) ,
    18: Bibliography N
  • D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
  • W. J. Nellis and B. C. Carlson (1966) Reduction and evaluation of elliptic integrals. Math. Comp. 20 (94), pp. 223–231.
  • E. W. Ng and M. Geller (1969) A table of integrals of the error functions. J. Res. Nat. Bur. Standards Sect B. 73B, pp. 1–20.
  • J. F. Nye (2006) Dislocation lines in the hyperbolic umbilic diffraction catastrophe. Proc. Roy. Soc. Lond. Ser. A 462, pp. 2299–2313.
  • 19: 4.30 Elementary Properties
    §4.30 Elementary Properties
    Table 4.30.1: Hyperbolic functions: interrelations. …
    sinh θ = a cosh θ = a tanh θ = a csch θ = a sech θ = a coth θ = a
    sinh θ a ( a 2 1 ) 1 / 2 a ( 1 a 2 ) 1 / 2 a 1 a 1 ( 1 a 2 ) 1 / 2 ( a 2 1 ) 1 / 2
    cosh θ ( 1 + a 2 ) 1 / 2 a ( 1 a 2 ) 1 / 2 a 1 ( 1 + a 2 ) 1 / 2 a 1 a ( a 2 1 ) 1 / 2
    20: Errata
  • Figures 36.3.9, 36.3.10, 36.3.11, 36.3.12

    Scales were corrected in all figures. The interval 8.4 x y 2 8.4 was replaced by 12.0 x y 2 12.0 and 12.7 x + y 2 4.2 replaced by 18.0 x + y 2 6.0 . All plots and interactive visualizations were regenerated to improve image quality.

    See accompanying text See accompanying text
    (a) Density plot. (b) 3D plot.

    Figure 36.3.9: Modulus of hyperbolic umbilic canonical integral function | Ψ ( H ) ( x , y , 0 ) | .

    See accompanying text See accompanying text
    (a) Density plot. (b) 3D plot.

    Figure 36.3.10: Modulus of hyperbolic umbilic canonical integral function | Ψ ( H ) ( x , y , 1 ) | .

    See accompanying text See accompanying text
    (a) Density plot. (b) 3D plot.

    Figure 36.3.11: Modulus of hyperbolic umbilic canonical integral function | Ψ ( H ) ( x , y , 2 ) | .

    See accompanying text See accompanying text
    (a) Density plot. (b) 3D plot.

    Figure 36.3.12: Modulus of hyperbolic umbilic canonical integral function | Ψ ( H ) ( x , y , 3 ) | .

    Reported 2016-09-12 by Dan Piponi.

  • Figures 36.3.18, 36.3.19, 36.3.20, 36.3.21

    The scaling error reported on 2016-09-12 by Dan Piponi also applied to contour and density plots for the phase of the hyperbolic umbilic canonical integrals. Scales were corrected in all figures. The interval 8.4 x y 2 8.4 was replaced by 12.0 x y 2 12.0 and 12.7 x + y 2 4.2 replaced by 18.0 x + y 2 6.0 . All plots and interactive visualizations were regenerated to improve image quality.

    See accompanying text See accompanying text
    (a) Contour plot. (b) Density plot.

    Figure 36.3.18: Phase of hyperbolic umbilic canonical integral ph Ψ ( H ) ( x , y , 0 ) .

    See accompanying text See accompanying text
    (a) Contour plot. (b) Density plot.

    Figure 36.3.19: Phase of hyperbolic umbilic canonical integral ph Ψ ( H ) ( x , y , 1 ) .

    See accompanying text See accompanying text
    (a) Contour plot. (b) Density plot.

    Figure 36.3.20: Phase of hyperbolic umbilic canonical integral ph Ψ ( H ) ( x , y , 2 ) .

    See accompanying text See accompanying text
    (a) Contour plot. (b) Density plot.

    Figure 36.3.21: Phase of hyperbolic umbilic canonical integral ph Ψ ( H ) ( x , y , 3 ) .

    Reported 2016-09-28.

  • Chapters 8, 20, 36

    Several new equations have been added. See (8.17.24), (20.7.34), §20.11(v), (26.12.27), (36.2.28), and (36.2.29).

  • Equation (36.10.14)
    36.10.14 3 ( 2 Ψ ( E ) x 2 2 Ψ ( E ) y 2 ) + 2 i z Ψ ( E ) x x Ψ ( E ) = 0

    Originally this equation appeared with Ψ ( H ) x in the second term, rather than Ψ ( E ) x .

    Reported 2010-04-02.

  • References

    Bibliographic citations were added in §§1.13(v), 10.14, 10.21(ii), 18.15(v), 18.32, 30.16(iii), 32.13(ii), and as general references in Chapters 19, 20, 22, and 23.