About the Project

harmonic trapping potentials

AdvancedHelp

(0.001 seconds)

11—20 of 57 matching pages

11: Bibliography W
  • R. S. Ward (1987) The Nahm equations, finite-gap potentials and Lamé functions. J. Phys. A 20 (10), pp. 2679–2683.
  • M. I. Weinstein and J. B. Keller (1985) Hill’s equation with a large potential. SIAM J. Appl. Math. 45 (2), pp. 200–214.
  • G. Weiss (1965) Harmonic Analysis. In Studies in Real and Complex Analysis, I. I. Hirschman (Ed.), Studies in Mathematics, Vol. 3, pp. 124–178.
  • E. T. Whittaker (1902) On the functions associated with the parabolic cylinder in harmonic analysis. Proc. London Math. Soc. 35, pp. 417–427.
  • 12: 10.73 Physical Applications
    Laplace’s equation governs problems in heat conduction, in the distribution of potential in an electrostatic field, and in hydrodynamics in the irrotational motion of an incompressible fluid. … With the spherical harmonic Y , m ( θ , ϕ ) defined as in §14.30(i), the solutions are of the form f = g ( k ρ ) Y , m ( θ , ϕ ) with g = 𝗃 , 𝗒 , 𝗁 ( 1 ) , or 𝗁 ( 2 ) , depending on the boundary conditions. …In quantum mechanics the spherical Bessel functions arise in the solution of the Schrödinger wave equation for a particle in a central potential. …
    13: Tom H. Koornwinder
    Koornwinder has published numerous papers on special functions, harmonic analysis, Lie groups, quantum groups, computer algebra, and their interrelations, including an interpretation of Askey–Wilson polynomials on quantum SU(2), and a five-parameter extension (the Macdonald–Koornwinder polynomials) of Macdonald’s polynomials for root systems BC. …
    14: 29.18 Mathematical Applications
    §29.18(iii) Spherical and Ellipsoidal Harmonics
    15: 34.3 Basic Properties: 3 j Symbol
    §34.3(vii) Relations to Legendre Polynomials and Spherical Harmonics
    For the polynomials P l see §18.3, and for the function Y l , m see §14.30. …
    34.3.20 Y l 1 , m 1 ( θ , ϕ ) Y l 2 , m 2 ( θ , ϕ ) = l , m ( ( 2 l 1 + 1 ) ( 2 l 2 + 1 ) ( 2 l + 1 ) 4 π ) 1 2 ( l 1 l 2 l m 1 m 2 m ) Y l , m ( θ , ϕ ) ¯ ( l 1 l 2 l 0 0 0 ) ,
    34.3.22 0 2 π 0 π Y l 1 , m 1 ( θ , ϕ ) Y l 2 , m 2 ( θ , ϕ ) Y l 3 , m 3 ( θ , ϕ ) sin θ d θ d ϕ = ( ( 2 l 1 + 1 ) ( 2 l 2 + 1 ) ( 2 l 3 + 1 ) 4 π ) 1 2 ( l 1 l 2 l 3 0 0 0 ) ( l 1 l 2 l 3 m 1 m 2 m 3 ) .
    16: Bibliography M
  • T. M. MacRobert (1967) Spherical Harmonics. An Elementary Treatise on Harmonic Functions with Applications. 3rd edition, International Series of Monographs in Pure and Applied Mathematics, Vol. 98, Pergamon Press, Oxford.
  • I. Marquette and C. Quesne (2013) New ladder operators for a rational extension of the harmonic oscillator and superintegrability of some two-dimensional systems. J. Math. Phys. 54 (10), pp. Paper 102102, 12 pp..
  • I. Marquette and C. Quesne (2016) Connection between quantum systems involving the fourth Painlevé transcendent and k -step rational extensions of the harmonic oscillator related to Hermite exceptional orthogonal polynomial. J. Math. Phys. 57 (5), pp. Paper 052101, 15 pp..
  • G. Matviyenko (1993) On the evaluation of Bessel functions. Appl. Comput. Harmon. Anal. 1 (1), pp. 116–135.
  • N. Michel and M. V. Stoitsov (2008) Fast computation of the Gauss hypergeometric function with all its parameters complex with application to the Pöschl-Teller-Ginocchio potential wave functions. Comput. Phys. Comm. 178 (7), pp. 535–551.
  • 17: 25.16 Mathematical Applications
    25.16.5 H ( s ) = n = 1 H n n s ,
    where H n is given by (25.11.33). …
    25.16.13 n = 1 ( H n n ) 2 = 17 4 ζ ( 4 ) ,
    18: 15.18 Physical Applications
    The hypergeometric function has allowed the development of “solvable” models for one-dimensional quantum scattering through and over barriers (Eckart (1930), Bhattacharjie and Sudarshan (1962)), and generalized to include position-dependent effective masses (Dekar et al. (1999)). More varied applications include photon scattering from atoms (Gavrila (1967)), energy distributions of particles in plasmas (Mace and Hellberg (1995)), conformal field theory of critical phenomena (Burkhardt and Xue (1991)), quantum chromo-dynamics (Atkinson and Johnson (1988)), and general parametrization of the effective potentials of interaction between atoms in diatomic molecules (Herrick and O’Connor (1998)).
    19: Bibliography
  • J. C. Adams and P. N. Swarztrauber (1997) SPHEREPACK 2.0: A Model Development Facility. NCAR Technical Note Technical Report TN-436-STR, National Center for Atmospheric Research.
  • H. H. Aly, H. J. W. Müller-Kirsten, and N. Vahedi-Faridi (1975) Scattering by singular potentials with a perturbation – Theoretical introduction to Mathieu functions. J. Mathematical Phys. 16, pp. 961–970.
  • H. Alzer (1997a) A harmonic mean inequality for the gamma function. J. Comput. Appl. Math. 87 (2), pp. 195–198.
  • 20: Bibliography D
  • P. Dean (1966) The constrained quantum mechanical harmonic oscillator. Proc. Cambridge Philos. Soc. 62, pp. 277–286.
  • L. Dekar, L. Chetouani, and T. F. Hammann (1999) Wave function for smooth potential and mass step. Phys. Rev. A 59 (1), pp. 107–112.
  • R. Dutt, A. Khare, and U. P. Sukhatme (1988) Supersymmetry, shape invariance, and exactly solvable potentials. Amer. J. Phys. 56, pp. 163–168.