About the Project

harmonic%20oscillators

AdvancedHelp

(0.001 seconds)

11—20 of 133 matching pages

11: Bibliography L
β–Ί
  • P. W. Lawrence, R. M. Corless, and D. J. Jeffrey (2012) Algorithm 917: complex double-precision evaluation of the Wright Ο‰ function. ACM Trans. Math. Software 38 (3), pp. Art. 20, 17.
  • β–Ί
  • D. J. Leeming (1977) An asymptotic estimate for the Bernoulli and Euler numbers. Canad. Math. Bull. 20 (1), pp. 109–111.
  • β–Ί
  • L.-W. Li, M. Leong, T.-S. Yeo, P.-S. Kooi, and K.-Y. Tan (1998a) Computations of spheroidal harmonics with complex arguments: A review with an algorithm. Phys. Rev. E 58 (5), pp. 6792–6806.
  • β–Ί
  • J. N. Lyness (1985) Integrating some infinite oscillating tails. J. Comput. Appl. Math. 12/13, pp. 109–117.
  • 12: 25.11 Hurwitz Zeta Function
    β–Ί
    β–ΊSee accompanying textβ–Ί
    Figure 25.11.1: Hurwitz zeta function ΞΆ ⁑ ( x , a ) , a = 0. …8, 1, 20 x 10 . … Magnify
    β–Ί
    25.11.32 0 a x n ⁒ ψ ⁑ ( x ) ⁒ d x = ( 1 ) n 1 ⁒ ΢ ⁑ ( n ) + ( 1 ) n ⁒ H n ⁒ B n + 1 n + 1 k = 0 n ( 1 ) k ⁒ ( n k ) ⁒ H k ⁒ B k + 1 ⁒ ( a ) k + 1 ⁒ a n k + k = 0 n ( 1 ) k ⁒ ( n k ) ⁒ ΢ ⁑ ( k , a ) ⁒ a n k , n = 1 , 2 , , ⁑ a > 0 ,
    β–Ίwhere H n are the harmonic numbers: β–Ί
    25.11.33 H n = k = 1 n k 1 .
    13: 15.17 Mathematical Applications
    β–Ί
    §15.17(iii) Group Representations
    β–ΊFor harmonic analysis it is more natural to represent hypergeometric functions as a Jacobi function (§15.9(ii)). …Harmonic analysis can be developed for the Jacobi transform either as a generalization of the Fourier-cosine transform (§1.14(ii)) or as a specialization of a group Fourier transform. …
    14: Sidebar 9.SB2: Interference Patterns in Caustics
    β–ΊThe oscillating intensity of the interference fringes across the caustic is described by the Airy function.
    15: 32.2 Differential Equations
    β–ΊWhen Ξ² = 0 this is a nonlinear harmonic oscillator. …
    16: 20 Theta Functions
    Chapter 20 Theta Functions
    17: Tom H. Koornwinder
    β–ΊKoornwinder has published numerous papers on special functions, harmonic analysis, Lie groups, quantum groups, computer algebra, and their interrelations, including an interpretation of Askey–Wilson polynomials on quantum SU(2), and a five-parameter extension (the Macdonald–Koornwinder polynomials) of Macdonald’s polynomials for root systems BC. …
    18: 29.18 Mathematical Applications
    β–Ί
    §29.18(iii) Spherical and Ellipsoidal Harmonics
    19: 34.3 Basic Properties: 3 ⁒ j Symbol
    β–Ί
    §34.3(vii) Relations to Legendre Polynomials and Spherical Harmonics
    β–ΊFor the polynomials P l see §18.3, and for the function Y l , m see §14.30. … β–Ί
    34.3.20 Y l 1 , m 1 ⁑ ( ΞΈ , Ο• ) ⁒ Y l 2 , m 2 ⁑ ( ΞΈ , Ο• ) = l , m ( ( 2 ⁒ l 1 + 1 ) ⁒ ( 2 ⁒ l 2 + 1 ) ⁒ ( 2 ⁒ l + 1 ) 4 ⁒ Ο€ ) 1 2 ⁒ ( l 1 l 2 l m 1 m 2 m ) ⁒ Y l , m ⁑ ( ΞΈ , Ο• ) ¯ ⁒ ( l 1 l 2 l 0 0 0 ) ,
    β–Ί
    34.3.22 0 2 ⁒ Ο€ 0 Ο€ Y l 1 , m 1 ⁑ ( ΞΈ , Ο• ) ⁒ Y l 2 , m 2 ⁑ ( ΞΈ , Ο• ) ⁒ Y l 3 , m 3 ⁑ ( ΞΈ , Ο• ) ⁒ sin ⁑ ΞΈ ⁒ d ΞΈ ⁒ d Ο• = ( ( 2 ⁒ l 1 + 1 ) ⁒ ( 2 ⁒ l 2 + 1 ) ⁒ ( 2 ⁒ l 3 + 1 ) 4 ⁒ Ο€ ) 1 2 ⁒ ( l 1 l 2 l 3 0 0 0 ) ⁒ ( l 1 l 2 l 3 m 1 m 2 m 3 ) .
    20: 25.16 Mathematical Applications
    β–Ί
    25.16.5 H ⁑ ( s ) = n = 1 H n n s ,
    β–Ίwhere H n is given by (25.11.33). … β–Ί
    25.16.13 n = 1 ( H n n ) 2 = 17 4 ⁒ ΢ ⁑ ( 4 ) ,