About the Project

generalized hypergeometric series

AdvancedHelp

(0.004 seconds)

31—40 of 65 matching pages

31: 17.4 Basic Hypergeometric Functions
โ–บThe series (17.4.1) is said to be balanced or Saalschützian when it terminates, r = s , z = q , and … โ–บThe series (17.4.1) is said to be k-balanced when r = s and … โ–บThe series (17.4.1) is said to be well-poised when r = s and … โ–บThe series (17.4.1) is said to be very-well-poised when r = s , (17.4.11) is satisfied, and … โ–บThe series (17.4.1) is said to be nearly-poised when r = s and …
32: 31.11 Expansions in Series of Hypergeometric Functions
§31.11 Expansions in Series of Hypergeometric Functions
โ–บ
§31.11(ii) General Form
โ–บ
§31.11(v) Doubly-Infinite Series
โ–บSchmidt (1979) gives expansions of path-multiplicative solutions (§31.6) in terms of doubly-infinite series of hypergeometric functions.
33: Bibliography M
โ–บ
  • A. R. Miller (1997) A class of generalized hypergeometric summations. J. Comput. Appl. Math. 87 (1), pp. 79–85.
  • โ–บ
  • S. C. Milne (1985c) A new symmetry related to ๐‘†๐‘ˆ โข ( n ) for classical basic hypergeometric series. Adv. in Math. 57 (1), pp. 71–90.
  • โ–บ
  • S. C. Milne (1985d) A q -analog of hypergeometric series well-poised in ๐‘†๐‘ˆ โข ( n ) and invariant G -functions. Adv. in Math. 58 (1), pp. 1–60.
  • โ–บ
  • S. C. Milne (1988) A q -analog of the Gauss summation theorem for hypergeometric series in U โข ( n ) . Adv. in Math. 72 (1), pp. 59–131.
  • โ–บ
  • S. C. Milne (1994) A q -analog of a Whipple’s transformation for hypergeometric series in U โข ( n ) . Adv. Math. 108 (1), pp. 1–76.
  • 34: Bibliography O
    โ–บ
  • O. M. Ogreid and P. Osland (1998) Summing one- and two-dimensional series related to the Euler series. J. Comput. Appl. Math. 98 (2), pp. 245–271.
  • โ–บ
  • A. B. Olde Daalhuis (2004a) Inverse factorial-series solutions of difference equations. Proc. Edinb. Math. Soc. (2) 47 (2), pp. 421–448.
  • โ–บ
  • J. Oliver (1977) An error analysis of the modified Clenshaw method for evaluating Chebyshev and Fourier series. J. Inst. Math. Appl. 20 (3), pp. 379–391.
  • โ–บ
  • F. W. J. Olver (1994a) Asymptotic expansions of the coefficients in asymptotic series solutions of linear differential equations. Methods Appl. Anal. 1 (1), pp. 1–13.
  • โ–บ
  • F. W. J. Olver (1994b) The Generalized Exponential Integral. In Approximation and Computation (West Lafayette, IN, 1993), R. V. M. Zahar (Ed.), International Series of Numerical Mathematics, Vol. 119, pp. 497–510.
  • 35: Bibliography
    โ–บ
  • G. E. Andrews (1966a) On basic hypergeometric series, mock theta functions, and partitions. II. Quart. J. Math. Oxford Ser. (2) 17, pp. 132–143.
  • โ–บ
  • G. E. Andrews (1972) Summations and transformations for basic Appell series. J. London Math. Soc. (2) 4, pp. 618–622.
  • โ–บ
  • G. E. Andrews (1984) Multiple series Rogers-Ramanujan type identities. Pacific J. Math. 114 (2), pp. 267–283.
  • โ–บ
  • G. E. Andrews (1986) q -Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra. CBMS Regional Conference Series in Mathematics, Vol. 66, Amer. Math. Soc., Providence, RI.
  • โ–บ
  • R. Askey and J. Wilson (1985) Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Mem. Amer. Math. Soc. 54 (319), pp. iv+55.
  • 36: 19.15 Advantages of Symmetry
    โ–บElliptic integrals are special cases of a particular multivariate hypergeometric function called Lauricella’s F D (Carlson (1961b)). … โ–บSymmetry allows the expansion (19.19.7) in a series of elementary symmetric functions that gives high precision with relatively few terms and provides the most efficient method of computing the incomplete integral of the third kind (§19.36(i)). โ–บSymmetry makes possible the reduction theorems of §19.29(i), permitting remarkable compression of tables of integrals while generalizing the interval of integration. …
    37: 3.10 Continued Fractions
    โ–บ
    §3.10(ii) Relations to Power Series
    โ–บEvery convergent, asymptotic, or formal seriesโ–บWe say that it corresponds to the formal power seriesโ–บFor special functions see §5.10 (gamma function), §7.9 (error function), §8.9 (incomplete gamma functions), §8.17(v) (incomplete beta function), §8.19(vii) (generalized exponential integral), §§10.10 and 10.33 (quotients of Bessel functions), §13.6 (quotients of confluent hypergeometric functions), §13.19 (quotients of Whittaker functions), and §15.7 (quotients of hypergeometric functions). … โ–บ
    Forward Series Recurrence Algorithm
    38: 13.31 Approximations
    โ–บ
    §13.31(i) Chebyshev-Series Expansions
    โ–บLuke (1969b, pp. 35 and 25) provides Chebyshev-series expansions of M โก ( a , b , x ) and U โก ( a , b , x ) that include the intervals 0 x ฮฑ and ฮฑ x < , respectively, where ฮฑ is an arbitrary positive constant. … โ–บ
    13.31.1 A n โก ( z ) = s = 0 n ( n ) s โข ( n + 1 ) s โข ( a ) s โข ( b ) s ( a + 1 ) s โข ( b + 1 ) s โข ( n ! ) 2 โข F 3 3 โก ( n + s , n + 1 + s , 1 1 + s , a + 1 + s , b + 1 + s ; z ) ,
    โ–บ โ–บ
    13.31.3 z a โข U โก ( a , 1 + a b , z ) = lim n A n โก ( z ) B n โก ( z ) .
    39: 15.2 Definitions and Analytical Properties
    โ–บ
    §15.2(i) Gauss Series
    โ–บThe hypergeometric function F โก ( a , b ; c ; z ) is defined by the Gauss series …In general, F โก ( a , b ; c ; z ) does not exist when c = 0 , 1 , 2 , . … โ–บOn the circle of convergence, | z | = 1 , the Gauss series: … โ–บThe same properties hold for F โก ( a , b ; c ; z ) , except that as a function of c , F โก ( a , b ; c ; z ) in general has poles at c = 0 , 1 , 2 , . …
    40: 16.8 Differential Equations
    โ–บโ–บ
    §16.8(ii) The Generalized Hypergeometric Differential Equation
    โ–บWe have the connection formula …(Note that the generalized hypergeometric functions on the right-hand side are polynomials in z 0 .) … โ–บ
    §16.8(iii) Confluence of Singularities