About the Project

generalized hypergeometric series

AdvancedHelp

(0.005 seconds)

21—30 of 65 matching pages

21: Bibliography S
β–Ί
  • T. C. Scott, G. Fee, and J. Grotendorst (2013) Asymptotic series of generalized Lambert W function. ACM Commun. Comput. Algebra 47 (3), pp. 75–83.
  • β–Ί
  • L. J. Slater (1966) Generalized Hypergeometric Functions. Cambridge University Press, Cambridge.
  • β–Ί
  • F. C. Smith (1939a) On the logarithmic solutions of the generalized hypergeometric equation when p = q + 1 . Bull. Amer. Math. Soc. 45 (8), pp. 629–636.
  • β–Ί
  • C. Snow (1952) Hypergeometric and Legendre Functions with Applications to Integral Equations of Potential Theory. National Bureau of Standards Applied Mathematics Series, No. 19, U. S. Government Printing Office, Washington, D.C..
  • β–Ί
  • K. Srinivasa Rao (1981) Computation of angular momentum coefficients using sets of generalized hypergeometric functions. Comput. Phys. Comm. 22 (2-3), pp. 297–302.
  • 22: 18.26 Wilson Class: Continued
    β–Ί
    §18.26(i) Representations as Generalized Hypergeometric Functions and Dualities
    β–ΊFor the definition of generalized hypergeometric functions see §16.2. … β–Ί β–Ί
    §18.26(iv) Generating Functions
    β–ΊFor the hypergeometric function F 1 2 see §§15.1 and 15.2(i). …
    23: 7.14 Integrals
    β–ΊIn a series of ten papers HadΕΎi (1968, 1969, 1970, 1972, 1973, 1975a, 1975b, 1976a, 1976b, 1978) gives many integrals containing error functions and Fresnel integrals, also in combination with the hypergeometric function, confluent hypergeometric functions, and generalized hypergeometric functions.
    24: 18.23 Hahn Class: Generating Functions
    β–ΊFor the definition of generalized hypergeometric functions see §16.2. β–Ί
    Hahn
    β–Ί
    18.23.1 F 1 1 ⁑ ( x α + 1 ; z ) ⁒ F 1 1 ⁑ ( x N β + 1 ; z ) = n = 0 N ( N ) n ( β + 1 ) n ⁒ n ! ⁒ Q n ⁑ ( x ; α , β , N ) ⁒ z n , x = 0 , 1 , , N .
    β–Ί
    18.23.2 F 0 2 ⁑ ( x , x + β + N + 1 ; z ) ⁒ F 0 2 ⁑ ( x N , x + α + 1 ; z ) = n = 0 N ( N ) n ⁒ ( α + 1 ) n n ! ⁒ Q n ⁑ ( x ; α , β , N ) ⁒ z n , x = 0 , 1 , , N .
    β–Ί
    18.23.6 F 1 1 ⁑ ( a + i ⁒ x 2 ⁒ ⁑ a ; i ⁒ z ) ⁒ F 1 1 ⁑ ( b ¯ i ⁒ x 2 ⁒ ⁑ b ; i ⁒ z ) = n = 0 p n ⁑ ( x ; a , b , a ¯ , b ¯ ) ( 2 ⁒ ⁑ a ) n ⁒ ( 2 ⁒ ⁑ b ) n ⁒ z n .
    25: 17.17 Physical Applications
    §17.17 Physical Applications
    β–ΊSee Berkovich and McCoy (1998) and Bethuel (1998) for recent surveys. β–ΊQuantum groups also apply q -series extensively. …See Kassel (1995). … β–ΊIt involves q -generalizations of exponentials and Laguerre polynomials, and has been applied to the problems of the harmonic oscillator and Coulomb potentials. …
    26: 8.27 Approximations
    β–Ί
  • Luke (1969b, pp. 25, 40–41) gives Chebyshev-series expansions for Ξ“ ⁑ ( a , Ο‰ ⁒ z ) (by specifying parameters) with 1 Ο‰ < , and Ξ³ ⁑ ( a , Ο‰ ⁒ z ) with 0 Ο‰ 1 ; see also Temme (1994b, §3).

  • β–Ί
  • Luke (1969b, p. 186) gives hypergeometric polynomial representations that converge uniformly on compact subsets of the z -plane that exclude z = 0 and are valid for | ph ⁑ z | < Ο€ .

  • β–Ί
    §8.27(ii) Generalized Exponential Integral
    β–Ί
  • Luke (1975, p. 103) gives Chebyshev-series expansions for E 1 ⁑ ( x ) and related functions for x 5 .

  • 27: 2.10 Sums and Sequences
    β–ΊThe asymptotic behavior of entire functions defined by Maclaurin series can be approached by converting the sum into a contour integral by use of the residue theorem and applying the methods of §§2.4 and 2.5. … β–Ί β–ΊHence … β–ΊFor generalizations and other examples see Olver (1997b, Chapter 8), Ford (1960), and Berndt and Evans (1984). … β–ΊWhat is the asymptotic behavior of f n as n or n ? More specially, what is the behavior of the higher coefficients in a Taylor-series expansion? …
    28: Bibliography L
    β–Ί
  • Y. T. Li and R. Wong (2008) Integral and series representations of the Dirac delta function. Commun. Pure Appl. Anal. 7 (2), pp. 229–247.
  • β–Ί
  • J. L. López and E. Pérez Sinusía (2014) New series expansions for the confluent hypergeometric function M ⁒ ( a , b , z ) . Appl. Math. Comput. 235, pp. 26–31.
  • β–Ί
  • J. L. López and N. M. Temme (2013) New series expansions of the Gauss hypergeometric function. Adv. Comput. Math. 39 (2), pp. 349–365.
  • β–Ί
  • Y. L. Luke and J. Wimp (1963) Jacobi polynomial expansions of a generalized hypergeometric function over a semi-infinite ray. Math. Comp. 17 (84), pp. 395–404.
  • β–Ί
  • Y. L. Luke (1959) Expansion of the confluent hypergeometric function in series of Bessel functions. Math. Tables Aids Comput. 13 (68), pp. 261–271.
  • 29: 33.23 Methods of Computation
    β–Ί
    §33.23(i) Methods for the Confluent Hypergeometric Functions
    β–Ί
    §33.23(ii) Series Solutions
    β–ΊCurtis (1964a, §10) describes the use of series, radial integration, and other methods to generate the tables listed in §33.24. … β–ΊThompson and Barnett (1985, 1986) and Thompson (2004) use combinations of series, continued fractions, and Padé-accelerated asymptotic expansions (§3.11(iv)) for the analytic continuations of Coulomb functions. β–ΊNoble (2004) obtains double-precision accuracy for W Ξ· , ΞΌ ⁑ ( 2 ⁒ ρ ) for a wide range of parameters using a combination of recurrence techniques, power-series expansions, and numerical quadrature; compare (33.2.7). …
    30: 35.8 Generalized Hypergeometric Functions of Matrix Argument
    §35.8 Generalized Hypergeometric Functions of Matrix Argument
    β–Ί
    §35.8(i) Definition
    β–Ί
    Convergence Properties
    β–Ί
    §35.8(iv) General Properties
    β–Ί
    Confluence