About the Project

generalized exponentials and logarithms

AdvancedHelp

(0.004 seconds)

1—10 of 148 matching pages

1: 8.24 Physical Applications
§8.24 Physical Applications
The function γ ( a , x ) appears in: discussions of power-law relaxation times in complex physical systems (Sornette (1998)); logarithmic oscillations in relaxation times for proteins (Metzler et al. (1999)); Gaussian orbitals and exponential (Slater) orbitals in quantum chemistry (Shavitt (1963), Shavitt and Karplus (1965)); population biology and ecological systems (Camacho et al. (2002)). …
§8.24(iii) Generalized Exponential Integral
The function E p ( x ) , with p > 0 , appears in theories of transport and radiative equilibrium (Hopf (1934), Kourganoff (1952), Altaç (1996)). With more general values of p , E p ( x ) supplies fundamental auxiliary functions that are used in the computation of molecular electronic integrals in quantum chemistry (Harris (2002), Shavitt (1963)), and also wave acoustics of overlapping sound beams (Ding (2000)).
2: 4.44 Other Applications
§4.44 Other Applications
For applications of generalized exponentials and generalized logarithms to computer arithmetic see §3.1(iv). …
3: 4.12 Generalized Logarithms and Exponentials
§4.12 Generalized Logarithms and Exponentials
A generalized exponential function ϕ ( x ) satisfies the equations
4.12.1 ϕ ( x + 1 ) = e ϕ ( x ) , 1 < x < ,
4.12.5 ϕ ( x ) = ψ ( x ) = x , 0 x 1 .
4.12.6 ϕ ( x ) = ln ( x + 1 ) , 1 < x < 0 ,
4: 8.19 Generalized Exponential Integral
8.19.2 E p ( z ) = z p 1 z e t t p d t .
8.19.5 E 0 ( z ) = z 1 e z , z 0 ,
8.19.12 p E p + 1 ( z ) + z E p ( z ) = e z .
8.19.21 1 x + n < e x E n ( x ) 1 x + n 1 ,
5: 8.20 Asymptotic Expansions of E p ( z )
8.20.1 E p ( z ) = e z z ( k = 0 n 1 ( 1 ) k ( p ) k z k + ( 1 ) n ( p ) n e z z n 1 E n + p ( z ) ) , n = 1 , 2 , 3 , .
8.20.3 E p ( z ) ± 2 π i Γ ( p ) e p π i z p 1 + e z z k = 0 ( 1 ) k ( p ) k z k , 1 2 π + δ ± ph z 7 2 π δ ,
8.20.6 E p ( λ p ) e λ p ( λ + 1 ) p k = 0 A k ( λ ) ( λ + 1 ) 2 k 1 p k ,
6: 7.11 Relations to Other Functions
Incomplete Gamma Functions and Generalized Exponential Integral
7.11.4 erf z = 2 z π M ( 1 2 , 3 2 , z 2 ) = 2 z π e z 2 M ( 1 , 3 2 , z 2 ) ,
7.11.5 erfc z = 1 π e z 2 U ( 1 2 , 1 2 , z 2 ) = z π e z 2 U ( 1 , 3 2 , z 2 ) .
Generalized Hypergeometric Functions
7: 8.22 Mathematical Applications
§8.22 Mathematical Applications
8.22.1 F p ( z ) = Γ ( p ) 2 π z 1 p E p ( z ) = Γ ( p ) 2 π Γ ( 1 p , z ) ,
8.22.2 ζ x ( s ) = 1 Γ ( s ) 0 x t s 1 e t 1 d t , s > 1 ,
The Debye functions 0 x t n ( e t 1 ) 1 d t and x t n ( e t 1 ) 1 d t are closely related to the incomplete Riemann zeta function and the Riemann zeta function. …
8: 2.11 Remainder Terms; Stokes Phenomenon
2.11.5 E p ( z ) = e z z p 1 Γ ( p ) 0 e z t t p 1 1 + t d t
2.11.7 E p ( z ) 2 π i e p π i Γ ( p ) z p 1 + e z z s = 0 ( 1 ) s ( p ) s z s ,
2.11.10 E p ( z ) = e z z s = 0 n 1 ( 1 ) s ( p ) s z s + ( 1 ) n 2 π Γ ( p ) z p 1 F n + p ( z ) ,
2.11.11 F n + p ( z ) = e z 2 π 0 e z t t n + p 1 1 + t d t = Γ ( n + p ) 2 π E n + p ( z ) z n + p 1 .
9: Bibliography C
  • C. W. Clenshaw, D. W. Lozier, F. W. J. Olver, and P. R. Turner (1986) Generalized exponential and logarithmic functions. Comput. Math. Appl. Part B 12 (5-6), pp. 1091–1101.
  • 10: 8.4 Special Values
    For E n ( z ) see §8.19(i). …
    8.4.5 Γ ( 1 , z ) = e z ,
    8.4.9 P ( n + 1 , z ) = 1 e z e n ( z ) ,
    8.4.10 Q ( n + 1 , z ) = e z e n ( z ) ,
    8.4.13 Γ ( 1 n , z ) = z 1 n E n ( z ) ,