About the Project

functions of matrix argument

AdvancedHelp

(0.005 seconds)

21—28 of 28 matching pages

21: 33.22 Particle Scattering and Atomic and Molecular Spectra
§33.22(i) Schrödinger Equation
For scattering problems, the interior solution is then matched to a linear combination of a pair of Coulomb functions, F ( η , ρ ) and G ( η , ρ ) , or f ( ϵ , ; r ) and h ( ϵ , ; r ) , to determine the scattering S -matrix and also the correct normalization of the interior wave solutions; see Bloch et al. (1951). … The Coulomb functions given in this chapter are most commonly evaluated for real values of ρ , r , η , ϵ and nonnegative integer values of , but they may be continued analytically to complex arguments and order as indicated in §33.13. …
  • Searches for resonances as poles of the S -matrix in the complex half-plane 𝗄 < 𝟢 . See for example Csótó and Hale (1997).

  • 22: Bibliography D
  • G. M. D’Ariano, C. Macchiavello, and M. G. A. Paris (1994) Detection of the density matrix through optical homodyne tomography without filtered back projection. Phys. Rev. A 50 (5), pp. 4298–4302.
  • P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides, and X. Zhou (1999b) Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Comm. Pure Appl. Math. 52 (11), pp. 1335–1425.
  • C. F. du Toit (1993) Bessel functions J n ( z ) and Y n ( z ) of integer order and complex argument. Comput. Phys. Comm. 78 (1-2), pp. 181–189.
  • T. M. Dunster (2013) Conical functions of purely imaginary order and argument. Proc. Roy. Soc. Edinburgh Sect. A 143 (5), pp. 929–955.
  • A. J. Durán and F. A. Grünbaum (2005) A survey on orthogonal matrix polynomials satisfying second order differential equations. J. Comput. Appl. Math. 178 (1-2), pp. 169–190.
  • 23: Bibliography C
  • J. B. Campbell (1979) Bessel functions J ν ( x ) and Y ν ( x ) of real order and real argument. Comput. Phys. Comm. 18 (1), pp. 133–142.
  • J. B. Campbell (1981) Bessel functions I ν ( x ) and K ν ( x ) of real order and complex argument. Comput. Phys. Comm. 24 (1), pp. 97–105.
  • R. M. Corless, D. J. Jeffrey, and H. Rasmussen (1992) Numerical evaluation of Airy functions with complex arguments. J. Comput. Phys. 99 (1), pp. 106–114.
  • A. Csótó and G. M. Hale (1997) S -matrix and R -matrix determination of the low-energy He 5 and Li 5 resonance parameters. Phys. Rev. C 55 (1), pp. 536–539.
  • A. R. Curtis (1964b) Tables of Jacobian Elliptic Functions Whose Arguments are Rational Fractions of the Quarter Period. National Physical Laboratory Mathematical Tables, Vol. 7, Her Majesty’s Stationery Office, London.
  • 24: Bibliography F
  • V. N. Faddeyeva and N. M. Terent’ev (1961) Tables of Values of the Function w ( z ) = e z 2 ( 1 + 2 i π 1 / 2 0 z e t 2 𝑑 t ) for Complex Argument. Edited by V. A. Fok; translated from the Russian by D. G. Fry. Mathematical Tables Series, Vol. 11, Pergamon Press, Oxford.
  • P. Falloon (2001) Theory and Computation of Spheroidal Harmonics with General Arguments. Master’s Thesis, The University of Western Australia, Department of Physics.
  • L. Fox (1960) Tables of Weber Parabolic Cylinder Functions and Other Functions for Large Arguments. National Physical Laboratory Mathematical Tables, Vol. 4. Department of Scientific and Industrial Research, Her Majesty’s Stationery Office, London.
  • C. L. Frenzen (1992) Error bounds for the asymptotic expansion of the ratio of two gamma functions with complex argument. SIAM J. Math. Anal. 23 (2), pp. 505–511.
  • Y. V. Fyodorov (2005) Introduction to the Random Matrix Theory: Gaussian Unitary Ensemble and Beyond. In Recent Perspectives in Random Matrix Theory and Number Theory, London Math. Soc. Lecture Note Ser., Vol. 322, pp. 31–78.
  • 25: Bibliography Y
  • G. D. Yakovleva (1969) Tables of Airy Functions and Their Derivatives. Izdat. Nauka, Moscow (Russian).
  • H. A. Yamani and L. Fishman (1975) J -matrix method: Extensions to arbitrary angular momentum and to Coulomb scattering. J. Math. Phys. 16, pp. 410–420.
  • Z. M. Yan (1992) Generalized Hypergeometric Functions and Laguerre Polynomials in Two Variables. In Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications (Tampa, FL, 1991), Contemporary Mathematics, Vol. 138, pp. 239–259.
  • T. Yoshida (1995) Computation of Kummer functions U ( a , b , x ) for large argument x by using the τ -method. Trans. Inform. Process. Soc. Japan 36 (10), pp. 2335–2342 (Japanese).
  • A. Young and A. Kirk (1964) Bessel Functions. Part IV: Kelvin Functions. Royal Society Mathematical Tables, Volume 10, Cambridge University Press, Cambridge-New York.
  • 26: 18.38 Mathematical Applications
    Complex Function Theory
    Random Matrix Theory
    Hermite polynomials (and their Freud-weight analogs (§18.32)) play an important role in random matrix theory. … The 3 j symbol (34.2.6), with an alternative expression as a terminating F 2 3 of unit argument, can be expressed in terms of Hahn polynomials (18.20.5) or, by (18.21.1), dual Hahn polynomials. … The 6 j symbol (34.4.3), with an alternative expression as a terminating balanced F 3 4 of unit argument, can be expressend in terms of Racah polynomials (18.26.3). …
    27: Bibliography
  • A. D. Alhaidari, E. J. Heller, H. A. Yamani, and M. S. Abdelmonem (Eds.) (2008) The J -Matrix Method. Developments and Applications. Springer-Verlag.
  • G. Allasia and R. Besenghi (1991) Numerical evaluation of the Kummer function with complex argument by the trapezoidal rule. Rend. Sem. Mat. Univ. Politec. Torino 49 (3), pp. 315–327.
  • D. E. Amos (1985) A subroutine package for Bessel functions of a complex argument and nonnegative order. Technical Report Technical Report SAND85-1018, Sandia National Laboratories, Albuquerque, NM.
  • D. E. Amos (1986) Algorithm 644: A portable package for Bessel functions of a complex argument and nonnegative order. ACM Trans. Math. Software 12 (3), pp. 265–273.
  • R. W. B. Ardill and K. J. M. Moriarty (1978) Spherical Bessel functions j n and y n of integer order and real argument. Comput. Phys. Comm. 14 (3-4), pp. 261–265.
  • 28: Bibliography M
  • L. C. Maximon (2003) The dilogarithm function for complex argument. Proc. Roy. Soc. London Ser. A 459, pp. 2807–2819.
  • Fr. Mechel (1966) Calculation of the modified Bessel functions of the second kind with complex argument. Math. Comp. 20 (95), pp. 407–412.
  • J. Miller and V. S. Adamchik (1998) Derivatives of the Hurwitz zeta function for rational arguments. J. Comput. Appl. Math. 100 (2), pp. 201–206.
  • R. Morris (1979) The dilogarithm function of a real argument. Math. Comp. 33 (146), pp. 778–787.
  • R. J. Muirhead (1978) Latent roots and matrix variates: A review of some asymptotic results. Ann. Statist. 6 (1), pp. 5–33.