About the Project

functions Fℓ(η,ρ),Gℓ(η,ρ),H±ℓ(η,ρ)

AdvancedHelp

(0.014 seconds)

31—40 of 236 matching pages

31: 9.18 Tables
  • Miller (1946) tabulates Ai ( x ) , Ai ( x ) for x = 20 ( .01 ) 2 ; log 10 Ai ( x ) , Ai ( x ) / Ai ( x ) for x = 0 ( .1 ) 25 ( 1 ) 75 ; Bi ( x ) , Bi ( x ) for x = 10 ( .1 ) 2.5 ; log 10 Bi ( x ) , Bi ( x ) / Bi ( x ) for x = 0 ( .1 ) 10 ; M ( x ) , N ( x ) , θ ( x ) , ϕ ( x ) (respectively F ( x ) , G ( x ) , χ ( x ) , ψ ( x ) ) for x = 80 ( 1 ) 30 ( .1 ) 0 . Precision is generally 8D; slightly less for some of the auxiliary functions. Extracts from these tables are included in Abramowitz and Stegun (1964, Chapter 10), together with some auxiliary functions for large arguments.

  • 32: 19.4 Derivatives and Differential Equations
    19.4.8 ( k k 2 D k 2 + ( 1 3 k 2 ) D k k ) F ( ϕ , k ) = k sin ϕ cos ϕ ( 1 k 2 sin 2 ϕ ) 3 / 2 ,
    33: 15.7 Continued Fractions
    15.7.1 𝐅 ( a , b ; c ; z ) 𝐅 ( a , b + 1 ; c + 1 ; z ) = t 0 u 1 z t 1 u 2 z t 2 u 3 z t 3 ,
    34: 7.8 Inequalities
    7.8.7 sinh x 2 x < e x 2 F ( x ) = 0 x e t 2 d t < e x 2 1 x , x > 0 .
    The function F ( x ) / 1 e 2 x 2 is strictly decreasing for x > 0 . …
    35: 16.11 Asymptotic Expansions
    36: 19.7 Connection Formulas
    19.7.8 Π ( ϕ , α 2 , k ) + Π ( ϕ , ω 2 , k ) = F ( ϕ , k ) + c R C ( ( c 1 ) ( c k 2 ) , ( c α 2 ) ( c ω 2 ) ) , α 2 ω 2 = k 2 .
    19.7.9 ( k 2 α 2 ) Π ( ϕ , α 2 , k ) + ( k 2 ω 2 ) Π ( ϕ , ω 2 , k ) = k 2 F ( ϕ , k ) α 2 ω 2 c 1 R C ( c ( c k 2 ) , ( c α 2 ) ( c ω 2 ) ) , ( 1 α 2 ) ( 1 ω 2 ) = 1 k 2 .
    19.7.10 ( 1 α 2 ) Π ( ϕ , α 2 , k ) + ( 1 ω 2 ) Π ( ϕ , ω 2 , k ) = F ( ϕ , k ) + ( 1 α 2 ω 2 ) c k 2 R C ( c ( c 1 ) , ( c α 2 ) ( c ω 2 ) ) , ( k 2 α 2 ) ( k 2 ω 2 ) = k 2 ( k 2 1 ) .
    37: 14.3 Definitions and Hypergeometric Representations
    14.3.2 𝖰 ν μ ( x ) = π 2 sin ( μ π ) ( cos ( μ π ) ( 1 + x 1 x ) μ / 2 𝐅 ( ν + 1 , ν ; 1 μ ; 1 2 1 2 x ) Γ ( ν + μ + 1 ) Γ ( ν μ + 1 ) ( 1 x 1 + x ) μ / 2 𝐅 ( ν + 1 , ν ; 1 + μ ; 1 2 1 2 x ) ) .
    14.3.13 w 1 ( ν , μ , x ) = 2 μ Γ ( 1 2 ν + 1 2 μ + 1 2 ) Γ ( 1 2 ν 1 2 μ + 1 ) ( 1 x 2 ) μ / 2 𝐅 ( 1 2 ν 1 2 μ , 1 2 ν 1 2 μ + 1 2 ; 1 2 ; x 2 ) ,
    14.3.14 w 2 ( ν , μ , x ) = 2 μ Γ ( 1 2 ν + 1 2 μ + 1 ) Γ ( 1 2 ν 1 2 μ + 1 2 ) x ( 1 x 2 ) μ / 2 𝐅 ( 1 2 1 2 ν 1 2 μ , 1 2 ν 1 2 μ + 1 ; 3 2 ; x 2 ) .
    14.3.19 𝑸 ν μ ( x ) = 2 ν Γ ( ν + 1 ) ( x + 1 ) μ / 2 ( x 1 ) ( μ / 2 ) + ν + 1 𝐅 ( ν + 1 , ν + μ + 1 ; 2 ν + 2 ; 2 1 x ) ,
    38: 19.37 Tables
    Functions F ( ϕ , k ) and E ( ϕ , k )
    Functions R F ( x 2 , 1 , y 2 ) and R G ( x 2 , 1 , y 2 )
    Function R F ( a 2 , b 2 , c 2 ) with a b c = 1
    39: 7.24 Approximations
  • Cody et al. (1970) gives minimax rational approximations to Dawson’s integral F ( x ) (maximum relative precision 20S–22S).

  • Luke (1969b, pp. 323–324) covers 1 2 π erf x and e x 2 F ( x ) for 3 x 3 (the Chebyshev coefficients are given to 20D); π x e x 2 erfc x and 2 x F ( x ) for x 3 (the Chebyshev coefficients are given to 20D and 15D, respectively). Coefficients for the Fresnel integrals are given on pp. 328–330 (20D).

  • Luke (1969b, vol. 2, pp. 422–435) gives main diagonal Padé approximations for F ( z ) , erf z , erfc z , C ( z ) , and S ( z ) ; approximate errors are given for a selection of z -values.

  • 40: 1.6 Vectors and Vector-Valued Functions
    The divergence of a differentiable vector-valued function 𝐅 = F 1 𝐢 + F 2 𝐣 + F 3 𝐤 is … The curl of 𝐅 is … The line integral of a vector-valued function 𝐅 = F 1 𝐢 + F 2 𝐣 + F 3 𝐤 along 𝐜 is given by … For a vector-valued function 𝐅 , … when 𝐅 is a continuously differentiable vector-valued function. …