About the Project

fractional transformations

AdvancedHelp

(0.002 seconds)

21—30 of 32 matching pages

21: Bibliography W
  • H. S. Wall (1948) Analytic Theory of Continued Fractions. D. Van Nostrand Company, Inc., New York.
  • G. N. Watson (1910) The cubic transformation of the hypergeometric function. Quart. J. Pure and Applied Math. 41, pp. 70–79.
  • F. J. W. Whipple (1927) Some transformations of generalized hypergeometric series. Proc. London Math. Soc. (2) 26 (2), pp. 257–272.
  • D. V. Widder (1979) The Airy transform. Amer. Math. Monthly 86 (4), pp. 271–277.
  • D. V. Widder (1941) The Laplace Transform. Princeton Mathematical Series, v. 6, Princeton University Press, Princeton, NJ.
  • 22: Bibliography G
  • F. Gao and V. J. W. Guo (2013) Contiguous relations and summation and transformation formulae for basic hypergeometric series. J. Difference Equ. Appl. 19 (12), pp. 2029–2042.
  • I. Gargantini and P. Henrici (1967) A continued fraction algorithm for the computation of higher transcendental functions in the complex plane. Math. Comp. 21 (97), pp. 18–29.
  • G. Gasper (1975) Formulas of the Dirichlet-Mehler Type. In Fractional Calculus and its Applications, B. Ross (Ed.), Lecture Notes in Math., Vol. 457, pp. 207–215.
  • A. G. Gibbs (1973) Problem 72-21, Laplace transforms of Airy functions. SIAM Rev. 15 (4), pp. 796–798.
  • W. Groenevelt (2007) Fourier transforms related to a root system of rank 1. Transform. Groups 12 (1), pp. 77–116.
  • 23: 15.6 Integral Representations
    15.6.1 𝐅 ( a , b ; c ; z ) = 1 Γ ( b ) Γ ( c b ) 0 1 t b 1 ( 1 t ) c b 1 ( 1 z t ) a d t , | ph ( 1 z ) | < π ; c > b > 0 .
    15.6.2 𝐅 ( a , b ; c ; z ) = Γ ( 1 + b c ) 2 π i Γ ( b ) 0 ( 1 + ) t b 1 ( t 1 ) c b 1 ( 1 z t ) a d t , | ph ( 1 z ) | < π ; c b 1 , 2 , 3 , , b > 0 .
    15.6.2_5 𝐅 ( a , b ; c ; z ) = 1 Γ ( b ) Γ ( c b ) 0 t b 1 ( t + 1 ) a c ( t z t + 1 ) a d t , | ph ( 1 z ) | < π ; c > b > 0 .
    15.6.8 𝐅 ( a , b ; c ; z ) = 1 Γ ( c d ) 0 1 𝐅 ( a , b ; d ; z t ) t d 1 ( 1 t ) c d 1 d t , | ph ( 1 z ) | < π ; c > d > 0 .
    Note that (15.6.8) can be rewritten as a fractional integral. …
    24: Bibliography O
  • F. Oberhettinger and T. P. Higgins (1961) Tables of Lebedev, Mehler and Generalized Mehler Transforms. Mathematical Note Technical Report 246, Boeing Scientific Research Lab, Seattle.
  • F. Oberhettinger (1990) Tables of Fourier Transforms and Fourier Transforms of Distributions. Springer-Verlag, Berlin.
  • F. Oberhettinger (1972) Tables of Bessel Transforms. Springer-Verlag, Berlin-New York.
  • F. Oberhettinger (1974) Tables of Mellin Transforms. Springer-Verlag, Berlin-New York.
  • F. W. J. Olver (1977c) Second-order differential equations with fractional transition points. Trans. Amer. Math. Soc. 226, pp. 227–241.
  • 25: 1.15 Summability Methods
    where F ( t ) is the Fourier transform of f ( x ) 1.14(i)). …
    §1.15(vi) Fractional Integrals
    For α > 0 and x 0 , the Riemann-Liouville fractional integral of order α is defined by …
    §1.15(vii) Fractional Derivatives
    Note that 𝐷 1 / 2 𝐷 𝐷 3 / 2 . …
    26: 3.11 Approximation Techniques
    Laplace Transform Inversion
    Numerical inversion of the Laplace transform1.14(iii)) …
    Example. The Discrete Fourier Transform
    is called a discrete Fourier transform pair.
    The Fast Fourier Transform
    27: 10.74 Methods of Computation
    §10.74(v) Continued Fractions
    Hankel Transform
    Spherical Bessel Transform
    The spherical Bessel transform is the Hankel transform (10.22.76) in the case when ν is half an odd positive integer. …
    Kontorovich–Lebedev Transform
    28: 20.11 Generalizations and Analogs
    If both m , n are positive, then G ( m , n ) allows inversion of its arguments as a modular transformation (compare (23.15.3) and (23.15.4)): … In the case z = 0 identities for theta functions become identities in the complex variable q , with | q | < 1 , that involve rational functions, power series, and continued fractions; see Adiga et al. (1985), McKean and Moll (1999, pp. 156–158), and Andrews et al. (1988, §10.7). …
    29: 13.4 Integral Representations
    The fractional powers are continuous and assume their principal values at t = α . …At this point the fractional powers are determined by ph t = π and ph ( 1 + t ) = 0 . …
    13.4.16 𝐌 ( a , b , z ) = 1 2 π i Γ ( a ) i i Γ ( a + t ) Γ ( t ) Γ ( b + t ) z t d t , | ph z | < 1 2 π ,
    13.4.17 U ( a , b , z ) = z a 2 π i i i Γ ( a + t ) Γ ( 1 + a b + t ) Γ ( t ) Γ ( a ) Γ ( 1 + a b ) z t d t , | ph z | < 3 2 π ,
    13.4.18 U ( a , b , z ) = z 1 b e z 2 π i i i Γ ( b 1 + t ) Γ ( t ) Γ ( a + t ) z t d t , | ph z | < 1 2 π ,
    30: Bibliography R
  • Yu. L. Ratis and P. Fernández de Córdoba (1993) A code to calculate (high order) Bessel functions based on the continued fractions method. Comput. Phys. Comm. 76 (3), pp. 381–388.
  • M. D. Rogers (2005) Partial fractions expansions and identities for products of Bessel functions. J. Math. Phys. 46 (4), pp. 043509–1–043509–18.
  • K. Rottbrand (2000) Finite-sum rules for Macdonald’s functions and Hankel’s symbols. Integral Transform. Spec. Funct. 10 (2), pp. 115–124.