About the Project

fractional integrals

AdvancedHelp

(0.003 seconds)

31—40 of 64 matching pages

31: 14.17 Integrals
14.17.7 1 1 𝖯 l m ( x ) 𝖯 n m ( x ) d x = ( 1 ) m l + 1 2 δ l , n ,
14.17.9 1 1 𝖯 n l ( x ) 𝖯 n m ( x ) 1 x 2 d x = ( 1 ) l l δ l , m , l > 0 .
32: Bibliography T
  • G. ’t Hooft and M. Veltman (1979) Scalar one-loop integrals. Nuclear Phys. B 153 (3-4), pp. 365–401.
  • I. J. Thompson and A. R. Barnett (1985) COULCC: A continued-fraction algorithm for Coulomb functions of complex order with complex arguments. Comput. Phys. Comm. 36 (4), pp. 363–372.
  • I. J. Thompson (2004) Erratum to “COULCC: A continued-fraction algorithm for Coulomb functions of complex order with complex arguments”. Comput. Phys. Comm. 159 (3), pp. 241–242.
  • J. S. Thompson (1996) High Speed Numerical Integration of Fermi Dirac Integrals. Master’s Thesis, Naval Postgraduate School, Monterey, CA.
  • J. Todd (1954) Evaluation of the exponential integral for large complex arguments. J. Research Nat. Bur. Standards 52, pp. 313–317.
  • 33: Bibliography
  • N. I. Akhiezer (1988) Lectures on Integral Transforms. Translations of Mathematical Monographs, Vol. 70, American Mathematical Society, Providence, RI.
  • J. R. Albright and E. P. Gavathas (1986) Integrals involving Airy functions. J. Phys. A 19 (13), pp. 2663–2665.
  • Z. Altaç (1996) Integrals involving Bickley and Bessel functions in radiative transfer, and generalized exponential integral functions. J. Heat Transfer 118 (3), pp. 789–792.
  • D. E. Amos (1980b) Computation of exponential integrals. ACM Trans. Math. Software 6 (3), pp. 365–377.
  • R. Askey and M. E. H. Ismail (1984) Recurrence relations, continued fractions, and orthogonal polynomials. Mem. Amer. Math. Soc. 49 (300), pp. iv+108.
  • 34: 19.20 Special Cases
    §19.20 Special Cases
    The general lemniscatic case is … where x , y , z may be permuted. … The general lemniscatic case is …
    35: Bibliography R
  • Yu. L. Ratis and P. Fernández de Córdoba (1993) A code to calculate (high order) Bessel functions based on the continued fractions method. Comput. Phys. Comm. 76 (3), pp. 381–388.
  • W. H. Reid (1995) Integral representations for products of Airy functions. Z. Angew. Math. Phys. 46 (2), pp. 159–170.
  • W. H. Reid (1997a) Integral representations for products of Airy functions. II. Cubic products. Z. Angew. Math. Phys. 48 (4), pp. 646–655.
  • M. D. Rogers (2005) Partial fractions expansions and identities for products of Bessel functions. J. Math. Phys. 46 (4), pp. 043509–1–043509–18.
  • G. B. Rybicki (1989) Dawson’s integral and the sampling theorem. Computers in Physics 3 (2), pp. 85–87.
  • 36: 8.25 Methods of Computation
    §8.25(iv) Continued Fractions
    The computation of γ ( a , z ) and Γ ( a , z ) by means of continued fractions is described in Jones and Thron (1985) and Gautschi (1979b, §§4.3, 5). … Stable recursive schemes for the computation of E p ( x ) are described in Miller (1960) for x > 0 and integer p . …
    37: 20.11 Generalizations and Analogs
    In the case z = 0 identities for theta functions become identities in the complex variable q , with | q | < 1 , that involve rational functions, power series, and continued fractions; see Adiga et al. (1985), McKean and Moll (1999, pp. 156–158), and Andrews et al. (1988, §10.7). … As in §20.11(ii), the modulus k of elliptic integrals19.2(ii)), Jacobian elliptic functions (§22.2), and Weierstrass elliptic functions (§23.6(ii)) can be expanded in q -series via (20.9.1). …
    38: Bibliography C
  • B. W. Char (1980) On Stieltjes’ continued fraction for the gamma function. Math. Comp. 34 (150), pp. 547–551.
  • A. D. Chave (1983) Numerical integration of related Hankel transforms by quadrature and continued fraction expansion. Geophysics 48 (12), pp. 1671–1686.
  • A. R. Curtis (1964b) Tables of Jacobian Elliptic Functions Whose Arguments are Rational Fractions of the Quarter Period. National Physical Laboratory Mathematical Tables, Vol. 7, Her Majesty’s Stationery Office, London.
  • A. Cuyt, V. Petersen, B. Verdonk, H. Waadeland, W. B. Jones, and C. Bonan-Hamada (2007) Handbook of Continued Fractions for Special Functions. Kluwer Academic Publishers Group, Dordrecht.
  • A. Cuyt, V. B. Petersen, B. Verdonk, H. Waadeland, and W. B. Jones (2008) Handbook of Continued Fractions for Special Functions. Springer, New York.
  • 39: 11.15 Approximations
  • Luke (1975, pp. 416–421) gives Chebyshev-series expansions for 𝐇 n ( x ) , 𝐋 n ( x ) , 0 | x | 8 , and 𝐇 n ( x ) Y n ( x ) , x 8 , for n = 0 , 1 ; 0 x t m 𝐇 0 ( t ) d t , 0 x t m 𝐋 0 ( t ) d t , 0 | x | 8 , m = 0 , 1 and 0 x ( 𝐇 0 ( t ) Y 0 ( t ) ) d t , x t 1 ( 𝐇 0 ( t ) Y 0 ( t ) ) d t , x 8 ; the coefficients are to 20D.

  • Newman (1984) gives polynomial approximations for 𝐇 n ( x ) for n = 0 , 1 , 0 x 3 , and rational-fraction approximations for 𝐇 n ( x ) Y n ( x ) for n = 0 , 1 , x 3 . The maximum errors do not exceed 1.2×10⁻⁸ for the former and 2.5×10⁻⁸ for the latter.

  • 40: 18.2 General Orthogonal Polynomials
    More generally than (18.2.1)–(18.2.3), w ( x ) d x may be replaced in (18.2.1) by d μ ( x ) , where the measure μ is the Lebesgue–Stieltjes measure μ α corresponding to a bounded nondecreasing function α on the closure of ( a , b ) with an infinite number of points of increase, and such that a b | x | n d μ ( x ) < for all n . …
    18.2.24 λ n = h n 1 a b f ( x ) p n ( x ) w ( x ) d x
    §18.2(x) Orthogonal Polynomials and Continued Fractions
    Using the terminology of §1.12(ii), the n -th approximant of the continued fraction