About the Project

double

AdvancedHelp

(0.002 seconds)

21—30 of 93 matching pages

21: Bibliography N
  • M. Nardin, W. F. Perger, and A. Bhalla (1992a) Algorithm 707: CONHYP: A numerical evaluator of the confluent hypergeometric function for complex arguments of large magnitudes. ACM Trans. Math. Software 18 (3), pp. 345–349.
  • NetNUMPAC (free Fortran library)
  • NMS (free collection of Fortran subroutines)
  • C. J. Noble and I. J. Thompson (1984) COULN, a program for evaluating negative energy Coulomb functions. Comput. Phys. Comm. 33 (4), pp. 413–419.
  • C. J. Noble (2004) Evaluation of negative energy Coulomb (Whittaker) functions. Comput. Phys. Comm. 159 (1), pp. 55–62.
  • 22: 1.6 Vectors and Vector-Valued Functions
    1.6.54 S f ( x , y , z ) d S = D f ( 𝚽 ( u , v ) ) 𝐓 u × 𝐓 v d u d v .
    1.6.55 S 𝐅 d 𝐒 = D 𝐅 ( 𝐓 u × 𝐓 v ) d u d v ,
    1.6.56 𝚽 1 ( D 1 ) 𝐅 d 𝐒 = 𝚽 2 ( D 2 ) 𝐅 d 𝐒 ;
    1.6.57 S ( × 𝐅 ) d 𝐒 = S 𝐅 d 𝐬 ,
    1.6.58 V ( 𝐅 ) d V = S 𝐅 d 𝐒 ,
    23: 3.1 Arithmetics and Error Measures
    IEEE Standard
    In the case of the normalized binary interchange formats, the representation of data for binary32 (previously single precision) ( N = 32 , p = 24 , E min = 126 , E max = 127 ), binary64 (previously double precision) ( N = 64 , p = 53 , E min = 1022 , E max = 1023 ) and binary128 (previously quad precision) ( N = 128 , p = 113 , E min = 16382 , E max = 16383 ) are as in Figure 3.1.1. …
    Figure 3.1.1: Floating-point arithmetic. Representation of data in the binary interchange formats for binary32, binary64 and binary128 (previously single, double and quad precision).
    24: 20.5 Infinite Products and Related Results
    §20.5(iii) Double Products
    These double products are not absolutely convergent; hence the order of the limits is important. …
    25: Bibliography Y
  • T. Yoshida (1995) Computation of Kummer functions U ( a , b , x ) for large argument x by using the τ -method. Trans. Inform. Process. Soc. Japan 36 (10), pp. 2335–2342 (Japanese).
  • 26: 1.13 Differential Equations
    Here dots denote differentiations with respect to ζ , and { z , ζ } is the Schwarzian derivative:
    1.13.20 { z , ζ } = 2 z ˙ 1 / 2 d 2 d ζ 2 ( z ˙ 1 / 2 ) = z ˙˙˙ z ˙ 3 2 ( z ¨ z ˙ ) 2 .
    1.13.29 w ¨ ( t ) + ( λ q ^ ( t ) ) w ( t ) = 0 , t [ 0 , c ]
    where w ¨ now denotes d 2 w d t 2 , via the transformation …
    27: Bibliography F
  • B. R. Fabijonas (2004) Algorithm 838: Airy functions. ACM Trans. Math. Software 30 (4), pp. 491–501.
  • FDLIBM (free C library)
  • C. Ferreira and J. L. López (2001) An asymptotic expansion of the double gamma function. J. Approx. Theory 111 (2), pp. 298–314.
  • R. C. Forrey (1997) Computing the hypergeometric function. J. Comput. Phys. 137 (1), pp. 79–100.
  • P. A. Fox, A. D. Hall, and N. L. Schryer (1978) The PORT mathematical subroutine library. ACM Trans. Math. Software 4 (2), pp. 104–126.
  • 28: Bibliography B
  • A. Bañuelos, R. A. Depine, and R. C. Mancini (1981) A program for computing the Fermi-Dirac functions. Comput. Phys. Comm. 21 (3), pp. 315–322.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • W. Bühring (1994) The double confluent Heun equation: Characteristic exponent and connection formulae. Methods Appl. Anal. 1 (3), pp. 348–370.
  • J. L. Burchnall and T. W. Chaundy (1940) Expansions of Appell’s double hypergeometric functions. Quart. J. Math., Oxford Ser. 11, pp. 249–270.
  • J. L. Burchnall and T. W. Chaundy (1941) Expansions of Appell’s double hypergeometric functions. II. Quart. J. Math., Oxford Ser. 12, pp. 112–128.
  • 29: 10.20 Uniform Asymptotic Expansions for Large Order
    §10.20(iii) Double Asymptotic Properties
    30: 16.15 Integral Representations and Integrals
    16.15.3 F 3 ( α , α ; β , β ; γ ; x , y ) = Γ ( γ ) Γ ( β ) Γ ( β ) Γ ( γ β β ) Δ u β 1 v β 1 ( 1 u v ) γ β β 1 ( 1 u x ) α ( 1 v y ) α d u d v , ( γ β β ) > 0 , β > 0 , β > 0 ,
    For these and other formulas, including double Mellin–Barnes integrals, see Erdélyi et al. (1953a, §5.8). …