About the Project

distributional methods

AdvancedHelp

(0.002 seconds)

11—20 of 26 matching pages

11: Bibliography C
  • B. C. Carlson (1961a) Ellipsoidal distributions of charge or mass. J. Mathematical Phys. 2, pp. 441–450.
  • R. Chattamvelli and R. Shanmugam (1997) Algorithm AS 310. Computing the non-central beta distribution function. Appl. Statist. 46 (1), pp. 146–156.
  • J. N. L. Connor and D. C. Mackay (1979) Calculation of angular distributions in complex angular momentum theories of elastic scattering. Molecular Physics 37 (6), pp. 1703–1712.
  • A. G. Constantine (1963) Some non-central distribution problems in multivariate analysis. Ann. Math. Statist. 34 (4), pp. 1270–1285.
  • R. Courant and D. Hilbert (1953) Methods of mathematical physics. Vol. I. Interscience Publishers, Inc., New York, N.Y..
  • 12: Philip J. Davis
    Davis joined the Section as part of a distinguished group of researchers studying mathematical methods for exploiting the new computational power. … He also had a big influence on the development of the NBS Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (A&S), which became one of the most widely distributed and highly cited publications in NIST’s history. … In 1961, Davis hired Frank W. J. Olver, a founding member of the Mathematics Division and Head of the Numerical Methods Section at the National Physical Laboratory, Teddington, U. …
    13: Bibliography L
  • J. C. Lagarias, V. S. Miller, and A. M. Odlyzko (1985) Computing π ( x ) : The Meissel-Lehmer method. Math. Comp. 44 (170), pp. 537–560.
  • D. Le (1985) An efficient derivative-free method for solving nonlinear equations. ACM Trans. Math. Software 11 (3), pp. 250–262.
  • D. A. Levine (1969) Algorithm 344: Student’s t-distribution [S14]. Comm. ACM 12 (1), pp. 37–38.
  • J. E. Littlewood (1914) Sur la distribution des nombres premiers. Comptes Rendus de l’Academie des Sciences, Paris 158, pp. 1869–1872 (French).
  • I. M. Longman (1956) Note on a method for computing infinite integrals of oscillatory functions. Proc. Cambridge Philos. Soc. 52 (4), pp. 764–768.
  • 14: Bibliography T
  • N. M. Temme (1992b) Asymptotic inversion of the incomplete beta function. J. Comput. Appl. Math. 41 (1-2), pp. 145–157.
  • N. M. Temme (2015) Asymptotic Methods for Integrals. Series in Analysis, Vol. 6, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ.
  • C. A. Tracy and H. Widom (1994) Level-spacing distributions and the Airy kernel. Comm. Math. Phys. 159 (1), pp. 151–174.
  • J. F. Traub (1964) Iterative Methods for the Solution of Equations. Prentice-Hall Series in Automatic Computation, Prentice-Hall Inc., Englewood Cliffs, N.J..
  • E. O. Tuck (1964) Some methods for flows past blunt slender bodies. J. Fluid Mech. 18, pp. 619–635.
  • 15: Bibliography P
  • R. B. Paris (2004) Exactification of the method of steepest descents: The Bessel functions of large order and argument. Proc. Roy. Soc. London Ser. A 460, pp. 2737–2759.
  • J. K. Patel and C. B. Read (1982) Handbook of the Normal Distribution. Statistics: Textbooks and Monographs, Vol. 40, Marcel Dekker Inc., New York.
  • P. C. B. Phillips (1986) The exact distribution of the Wald statistic. Econometrica 54 (4), pp. 881–895.
  • R. Piessens and M. Branders (1983) Modified Clenshaw-Curtis method for the computation of Bessel function integrals. BIT 23 (3), pp. 370–381.
  • M. Puoskari (1988) A method for computing Bessel function integrals. J. Comput. Phys. 75 (2), pp. 334–344.
  • 16: Bibliography Z
  • A. Zarzo, J. S. Dehesa, and R. J. Yañez (1995) Distribution of zeros of Gauss and Kummer hypergeometric functions. A semiclassical approach. Ann. Numer. Math. 2 (1-4), pp. 457–472.
  • A. H. Zemanian (1987) Distribution Theory and Transform Analysis, An Introduction and Generalized Functions with Applications. Dover, New York.
  • J. Zhang (1996) A note on the τ -method approximations for the Bessel functions Y 0 ( z ) and Y 1 ( z ) . Comput. Math. Appl. 31 (9), pp. 63–70.
  • 17: Bibliography B
  • J. Baik, P. Deift, and K. Johansson (1999) On the distribution of the length of the longest increasing subsequence of random permutations. J. Amer. Math. Soc. 12 (4), pp. 1119–1178.
  • L. E. Ballentine and S. M. McRae (1998) Moment equations for probability distributions in classical and quantum mechanics. Phys. Rev. A 58 (3), pp. 1799–1809.
  • E. A. Bender (1974) Asymptotic methods in enumeration. SIAM Rev. 16 (4), pp. 485–515.
  • C. Bingham, T. Chang, and D. Richards (1992) Approximating the matrix Fisher and Bingham distributions: Applications to spherical regression and Procrustes analysis. J. Multivariate Anal. 41 (2), pp. 314–337.
  • Å. Björck (1996) Numerical Methods for Least Squares Problems. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
  • 18: Bibliography J
  • A. T. James (1964) Distributions of matrix variates and latent roots derived from normal samples. Ann. Math. Statist. 35 (2), pp. 475–501.
  • A. J. E. M. Janssen (2021) Bounds on Dawson’s integral occurring in the analysis of a line distribution network for electric vehicles. Eurandom Preprint Series Technical Report 14, Eurandom, Eindhoven, The Netherlands.
  • H. Jeffreys and B. S. Jeffreys (1956) Methods of Mathematical Physics. 3rd edition, Cambridge University Press, Cambridge.
  • N. L. Johnson, S. Kotz, and N. Balakrishnan (1994) Continuous Univariate Distributions. 2nd edition, Vol. I, John Wiley & Sons Inc., New York.
  • N. L. Johnson, S. Kotz, and N. Balakrishnan (1995) Continuous Univariate Distributions. 2nd edition, Vol. II, John Wiley & Sons Inc., New York.
  • 19: Errata
    It was decided that much more information should be given in the section on general OP’s, and as a consequence Chapter 1 (Algebraic and Analytic Methods), also required a significant expansion. … We have also completely expanded our discussion on applications of orthogonal polynomials in the physical sciences, and also methods of computation for orthogonal polynomials. … The spectral theory of these operators, based on Sturm-Liouville and Liouville normal forms, distribution theory, is now discussed more completely, including linear algebra, matrices, matrices as linear operators, orthonormal expansions, Stieltjes integrals/measures, generating functions. …
  • Subsection 1.16(vii)

    Several changes have been made to

    1. (i)

      make consistent use of the Fourier transform notations ( f ) , ( ϕ ) and ( u ) where f is a function of one real variable, ϕ is a test function of n variables associated with tempered distributions, and u is a tempered distribution (see (1.14.1), (1.16.29) and (1.16.35));

    2. (ii)

      introduce the partial differential operator 𝐃 in (1.16.30);

    3. (iii)

      clarify the definition (1.16.32) of the partial differential operator P ( 𝐃 ) ; and

    4. (iv)

      clarify the use of P ( 𝐃 ) and P ( 𝐱 ) in (1.16.33), (1.16.34), (1.16.36) and (1.16.37).

  • Subsection 1.16(viii)

    An entire new Subsection 1.16(viii) Fourier Transforms of Special Distributions, was contributed by Roderick Wong.

  • 20: Bibliography D
  • P. J. Davis and P. Rabinowitz (1984) Methods of Numerical Integration. 2nd edition, Computer Science and Applied Mathematics, Academic Press Inc., Orlando, FL.
  • N. G. de Bruijn (1961) Asymptotic Methods in Analysis. 2nd edition, Bibliotheca Mathematica, Vol. IV, North-Holland Publishing Co., Amsterdam.
  • A. Debosscher (1998) Unification of one-dimensional Fokker-Planck equations beyond hypergeometrics: Factorizer solution method and eigenvalue schemes. Phys. Rev. E (3) 57 (1), pp. 252–275.
  • J. Deltour (1968) The computation of lattice frequency distribution functions by means of continued fractions. Physica 39 (3), pp. 413–423.
  • E. Dorrer (1968) Algorithm 322. F-distribution. Comm. ACM 11 (2), pp. 116–117.