About the Project

differences

AdvancedHelp

(0.000 seconds)

21—30 of 176 matching pages

21: 27.22 Software
  • Mathematica. PrimeQ combines strong pseudoprime tests for the bases 2 and 3 and a Lucas pseudoprime test. No known composite numbers pass these three tests, and Bleichenbacher (1996) has shown that this combination of tests proves primality for integers below 10 16 . Provable PrimeQ uses the Atkin–Goldwasser–Kilian–Morain Elliptic Curve Method to prove primality. FactorInteger tries Brent–Pollard rho, Pollard p 1 , and then cfrac after trial division. See §27.19. ecm is available also, and the Multiple Polynomial Quadratic sieve is expected in a future release.

    For additional Mathematica routines for factorization and primality testing, including several different pseudoprime tests, see Bressoud and Wagon (2000).

  • 22: 11.13 Methods of Computation
    §11.13(v) Difference Equations
    Sequences of values of 𝐇 ν ( z ) and 𝐋 ν ( z ) , with z fixed, can be computed by application of the inhomogeneous difference equations (11.4.23) and (11.4.25). …
    23: 28.26 Asymptotic Approximations for Large q
    28.26.1 Mc m ( 3 ) ( z , h ) = e i ϕ ( π h cosh z ) 1 / 2 ( Fc m ( z , h ) i Gc m ( z , h ) ) ,
    28.26.2 i Ms m + 1 ( 3 ) ( z , h ) = e i ϕ ( π h cosh z ) 1 / 2 ( Fs m ( z , h ) i Gs m ( z , h ) ) ,
    28.26.3 ϕ = 2 h sinh z ( m + 1 2 ) arctan ( sinh z ) .
    28.26.4 Fc m ( z , h ) 1 + s 8 h cosh 2 z + 1 2 11 h 2 ( s 4 + 86 s 2 + 105 cosh 4 z s 4 + 22 s 2 + 57 cosh 2 z ) + 1 2 14 h 3 ( s 5 + 14 s 3 + 33 s cosh 2 z 2 s 5 + 124 s 3 + 1122 s cosh 4 z + 3 s 5 + 290 s 3 + 1627 s cosh 6 z ) + ,
    28.26.5 Gc m ( z , h ) sinh z cosh 2 z ( s 2 + 3 2 5 h + 1 2 9 h 2 ( s 3 + 3 s + 4 s 3 + 44 s cosh 2 z ) + 1 2 14 h 3 ( 5 s 4 + 34 s 2 + 9 s 6 47 s 4 + 667 s 2 + 2835 12 cosh 2 z + s 6 + 505 s 4 + 12139 s 2 + 10395 12 cosh 4 z ) ) + .
    24: 7.7 Integral Representations
    7.7.1 erfc z = 2 π e z 2 0 e z 2 t 2 t 2 + 1 d t , | ph z | 1 4 π ,
    7.7.2 w ( z ) = 1 π i e t 2 d t t z = 2 z π i 0 e t 2 d t t 2 z 2 , z > 0 .
    7.7.3 0 e a t 2 + 2 i z t d t = 1 2 π a e z 2 / a + i a F ( z a ) , a > 0 .
    7.7.6 x e ( a t 2 + 2 b t + c ) d t = 1 2 π a e ( b 2 a c ) / a erfc ( a x + b a ) , a > 0 .
    7.7.9 0 x erf t d t = x erf x + 1 π ( e x 2 1 ) .
    25: Mathematical Introduction
    Two other ways in which this Handbook differs from AMS 55, and other handbooks, are as follows. … These include, for example, multivalued functions of complex variables, for which new definitions of branch points and principal values are supplied (§§1.10(vi), 4.2(i)); the Dirac delta (or delta function), which is introduced in a more readily comprehensible way for mathematicians (§1.17); numerically satisfactory solutions of differential and difference equations (§§2.7(iv), 2.9(i)); and numerical analysis for complex variables (Chapter 3). …
    complex plane (excluding infinity).
    Δ (or Δ x ) forward difference operator: Δ f ( x ) = f ( x + 1 ) f ( x ) .
    (or x ) backward difference operator: f ( x ) = f ( x ) f ( x 1 ) . (See also del operator in the Notations section.)
    26: 18.19 Hahn Class: Definitions
    The Askey scheme extends the three families of classical OP’s (Jacobi, Laguerre and Hermite) with eight further families of OP’s for which the role of the differentiation operator d d x in the case of the classical OP’s is played by a suitable difference operator. …
  • 1.

    Hahn class (or linear lattice class). These are OP’s p n ( x ) where the role of d d x is played by Δ x or x or δ x (see §18.1(i) for the definition of these operators). The Hahn class consists of four discrete and two continuous families.

  • 2.

    Wilson class (or quadratic lattice class). These are OP’s p n ( x ) = p n ( λ ( y ) ) ( p n ( x ) of degree n in x , λ ( y ) quadratic in y ) where the role of the differentiation operator is played by Δ y Δ y ( λ ( y ) ) or y y ( λ ( y ) ) or δ y δ y ( λ ( y ) ) . The Wilson class consists of two discrete and two continuous families.

  • 27: 28.8 Asymptotic Expansions for Large q
    28.8.6 C ^ m ( π h 2 ( m ! ) 2 ) 1 / 4 ( 1 + 2 m + 1 8 h + m 4 + 2 m 3 + 263 m 2 + 262 m + 108 2048 h 2 + ) 1 / 2 ,
    28.8.7 S ^ m ( π h 2 ( m ! ) 2 ) 1 / 4 ( 1 2 m + 1 8 h + m 4 + 2 m 3 121 m 2 122 m 84 2048 h 2 + ) 1 / 2 .
    28.8.9 W m ± ( x ) = e ± 2 h sin x ( cos x ) m + 1 { ( cos ( 1 2 x + 1 4 π ) ) 2 m + 1 , ( sin ( 1 2 x + 1 4 π ) ) 2 m + 1 ,
    28.8.11 P m ( x ) 1 + s 2 3 h cos 2 x + 1 h 2 ( s 4 + 86 s 2 + 105 2 11 cos 4 x s 4 + 22 s 2 + 57 2 11 cos 2 x ) + ,
    28.8.12 Q m ( x ) sin x cos 2 x ( 1 2 5 h ( s 2 + 3 ) + 1 2 9 h 2 ( s 3 + 3 s + 4 s 3 + 44 s cos 2 x ) ) + .
    28: Guide to Searching the DLMF
    To recognize the math symbols and structures, and to accommodate equivalence between various notations and various forms of expression, the search system maps the math part of your queries into a different form. … DLMF search is generally case-insensitive except when it is important to be case-sensitive, as when two different special functions have the same standard names but one name has a lower-case initial and the other is has an upper-case initial, such as si and Si, gamma and Gamma. … DLMF search recognizes just the essential font differences, that is, the font style differences deemed important for the DLMF contents: …
    29: 20.2 Definitions and Periodic Properties
    20.2.5 z m , n = ( m + n τ ) π , m , n ,
    20.2.6 θ 1 ( z + ( m + n τ ) π | τ ) = ( 1 ) m + n q n 2 e 2 i n z θ 1 ( z | τ ) ,
    20.2.7 θ 2 ( z + ( m + n τ ) π | τ ) = ( 1 ) m q n 2 e 2 i n z θ 2 ( z | τ ) ,
    20.2.8 θ 3 ( z + ( m + n τ ) π | τ ) = q n 2 e 2 i n z θ 3 ( z | τ ) ,
    20.2.10 M M ( z | τ ) = e i z + ( i π τ / 4 ) ,
    30: 28.10 Integral Equations
    28.10.1 2 π 0 π / 2 cos ( 2 h cos z cos t ) ce 2 n ( t , h 2 ) d t = A 0 2 n ( h 2 ) ce 2 n ( 1 2 π , h 2 ) ce 2 n ( z , h 2 ) ,
    28.10.2 2 π 0 π / 2 cosh ( 2 h sin z sin t ) ce 2 n ( t , h 2 ) d t = A 0 2 n ( h 2 ) ce 2 n ( 0 , h 2 ) ce 2 n ( z , h 2 ) ,
    28.10.3 2 π 0 π / 2 sin ( 2 h cos z cos t ) ce 2 n + 1 ( t , h 2 ) d t = h A 1 2 n + 1 ( h 2 ) ce 2 n + 1 ( 1 2 π , h 2 ) ce 2 n + 1 ( z , h 2 ) ,
    28.10.4 2 π 0 π / 2 cos z cos t cosh ( 2 h sin z sin t ) ce 2 n + 1 ( t , h 2 ) d t = A 1 2 n + 1 ( h 2 ) 2 ce 2 n + 1 ( 0 , h 2 ) ce 2 n + 1 ( z , h 2 ) ,
    28.10.5 2 π 0 π / 2 sinh ( 2 h sin z sin t ) se 2 n + 1 ( t , h 2 ) d t = h B 1 2 n + 1 ( h 2 ) se 2 n + 1 ( 0 , h 2 ) se 2 n + 1 ( z , h 2 ) ,