About the Project

definite%20integral

AdvancedHelp

(0.002 seconds)

21—30 of 473 matching pages

21: 35.5 Bessel Functions of Matrix Argument
35.5.3 B ν ( 𝐓 ) = 𝛀 etr ( ( 𝐓 𝐗 + 𝐗 1 ) ) | 𝐗 | ν 1 2 ( m + 1 ) d 𝐗 , ν , 𝐓 𝛀 .
35.5.5 𝟎 < 𝐗 < 𝐓 A ν 1 ( 𝐒 1 𝐗 ) | 𝐗 | ν 1 A ν 2 ( 𝐒 2 ( 𝐓 𝐗 ) ) | 𝐓 𝐗 | ν 2 d 𝐗 = | 𝐓 | ν 1 + ν 2 + 1 2 ( m + 1 ) A ν 1 + ν 2 + 1 2 ( m + 1 ) ( ( 𝐒 1 + 𝐒 2 ) 𝐓 ) , ν j , ( ν j ) > 1 , j = 1 , 2 ; 𝐒 1 , 𝐒 2 𝓢 ; 𝐓 𝛀 .
35.5.7 𝛀 A ν 1 ( 𝐓 𝐗 ) B ν 2 ( 𝐒 𝐗 ) | 𝐗 | ν 1 d 𝐗 = 1 A ν 1 + ν 2 ( 𝟎 ) | 𝐒 | ν 2 | 𝐓 + 𝐒 | ( ν 1 + ν 2 + 1 2 ( m + 1 ) ) , ( ν 1 + ν 2 ) > 1 ; 𝐒 , 𝐓 𝛀 .
22: Bibliography G
  • W. Gautschi (1994) Algorithm 726: ORTHPOL — a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules. ACM Trans. Math. Software 20 (1), pp. 21–62.
  • M. Geller and E. W. Ng (1969) A table of integrals of the exponential integral. J. Res. Nat. Bur. Standards Sect. B 73B, pp. 191–210.
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • M. L. Glasser (1976) Definite integrals of the complete elliptic integral K . J. Res. Nat. Bur. Standards Sect. B 80B (2), pp. 313–323.
  • Ya. I. Granovskiĭ, I. M. Lutzenko, and A. S. Zhedanov (1992) Mutual integrability, quadratic algebras, and dynamical symmetry. Ann. Phys. 217 (1), pp. 1–20.
  • 23: 35.3 Multivariate Gamma and Beta Functions
    35.3.2 Γ m ( s 1 , , s m ) = 𝛀 etr ( 𝐗 ) | 𝐗 | s m 1 2 ( m + 1 ) j = 1 m 1 | ( 𝐗 ) j | s j s j + 1 d 𝐗 , s j , ( s j ) > 1 2 ( j 1 ) , j = 1 , , m .
    35.3.3 B m ( a , b ) = 𝟎 < 𝐗 < 𝐈 | 𝐗 | a 1 2 ( m + 1 ) | 𝐈 𝐗 | b 1 2 ( m + 1 ) d 𝐗 , ( a ) , ( b ) > 1 2 ( m 1 ) .
    24: Bibliography
  • M. J. Ablowitz and H. Segur (1977) Exact linearization of a Painlevé transcendent. Phys. Rev. Lett. 38 (20), pp. 1103–1106.
  • A. Adelberg (1992) On the degrees of irreducible factors of higher order Bernoulli polynomials. Acta Arith. 62 (4), pp. 329–342.
  • S. V. Aksenov, M. A. Savageau, U. D. Jentschura, J. Becher, G. Soff, and P. J. Mohr (2003) Application of the combined nonlinear-condensation transformation to problems in statistical analysis and theoretical physics. Comput. Phys. Comm. 150 (1), pp. 1–20.
  • D. E. Amos (1989) Repeated integrals and derivatives of K Bessel functions. SIAM J. Math. Anal. 20 (1), pp. 169–175.
  • A. Apelblat (1983) Table of Definite and Infinite Integrals. Physical Sciences Data, Vol. 13, Elsevier Scientific Publishing Co., Amsterdam.
  • 25: Guide to Searching the DLMF
    Table 1: Query Examples
    Query Matching records contain
    int sin the integral of the sin function
    int_$^$ sin any definite integral of sin
    int adj sin immediately followed by sin without any intervening terms.
    int prec/10 sin(x) preceding sin x by no more than 10 terms.
    Table 2: Wildcard Examples
    Query What it stands for
    int_$^$ sin any definite integral of sin.
    26: 9.10 Integrals
    §9.10 Integrals
    §9.10(i) Indefinite Integrals
    §9.10(iii) Other Indefinite Integrals
    §9.10(iv) Definite Integrals
    §9.10(viii) Repeated Integrals
    27: 8.26 Tables
  • Khamis (1965) tabulates P ( a , x ) for a = 0.05 ( .05 ) 10 ( .1 ) 20 ( .25 ) 70 , 0.0001 x 250 to 10D.

  • §8.26(iv) Generalized Exponential Integral
  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.

  • 28: 4.10 Integrals
    §4.10 Integrals
    §4.10(i) Logarithms
    For li ( x ) see §6.2(i).
    §4.10(ii) Exponentials
    Extensive compendia of indefinite and definite integrals of logarithms and exponentials include Apelblat (1983, pp. 16–47), Bierens de Haan (1939), Gröbner and Hofreiter (1949, pp. 107–116), Gröbner and Hofreiter (1950, pp. 52–90), Gradshteyn and Ryzhik (2000, Chapters 2–4), and Prudnikov et al. (1986a, §§1.3, 1.6, 2.3, 2.6).
    29: 6.19 Tables
    §6.19(ii) Real Variables
  • Abramowitz and Stegun (1964, Chapter 5) includes x 1 Si ( x ) , x 2 Cin ( x ) , x 1 Ein ( x ) , x 1 Ein ( x ) , x = 0 ( .01 ) 0.5 ; Si ( x ) , Ci ( x ) , Ei ( x ) , E 1 ( x ) , x = 0.5 ( .01 ) 2 ; Si ( x ) , Ci ( x ) , x e x Ei ( x ) , x e x E 1 ( x ) , x = 2 ( .1 ) 10 ; x f ( x ) , x 2 g ( x ) , x e x Ei ( x ) , x e x E 1 ( x ) , x 1 = 0 ( .005 ) 0.1 ; Si ( π x ) , Cin ( π x ) , x = 0 ( .1 ) 10 . Accuracy varies but is within the range 8S–11S.

  • Zhang and Jin (1996, pp. 652, 689) includes Si ( x ) , Ci ( x ) , x = 0 ( .5 ) 20 ( 2 ) 30 , 8D; Ei ( x ) , E 1 ( x ) , x = [ 0 , 100 ] , 8S.

  • Abramowitz and Stegun (1964, Chapter 5) includes the real and imaginary parts of z e z E 1 ( z ) , x = 19 ( 1 ) 20 , y = 0 ( 1 ) 20 , 6D; e z E 1 ( z ) , x = 4 ( .5 ) 2 , y = 0 ( .2 ) 1 , 6D; E 1 ( z ) + ln z , x = 2 ( .5 ) 2.5 , y = 0 ( .2 ) 1 , 6D.

  • Zhang and Jin (1996, pp. 690–692) includes the real and imaginary parts of E 1 ( z ) , ± x = 0.5 , 1 , 3 , 5 , 10 , 15 , 20 , 50 , 100 , y = 0 ( .5 ) 1 ( 1 ) 5 ( 5 ) 30 , 50 , 100 , 8S.

  • 30: 35.2 Laplace Transform
    35.2.1 g ( 𝐙 ) = 𝛀 etr ( 𝐙 𝐗 ) f ( 𝐗 ) d 𝐗 ,
    Assume that 𝓢 | g ( 𝐔 + i 𝐕 ) | d 𝐕 converges, and also that its limit as 𝐔 is 0 . … where the integral is taken over all 𝐙 = 𝐔 + i 𝐕 such that 𝐔 > 𝐗 0 and 𝐕 ranges over 𝓢 . …
    35.2.3 f 1 f 2 ( 𝐓 ) = 𝟎 < 𝐗 < 𝐓 f 1 ( 𝐓 𝐗 ) f 2 ( 𝐗 ) d 𝐗 .