About the Project

contour integrals

AdvancedHelp

(0.002 seconds)

21—30 of 53 matching pages

21: Bibliography R
  • G. F. Remenets (1973) Computation of Hankel (Bessel) functions of complex index and argument by numerical integration of a Schläfli contour integral. Ž. Vyčisl. Mat. i Mat. Fiz. 13, pp. 1415–1424, 1636.
  • 22: Bibliography F
  • P. Flajolet and B. Salvy (1998) Euler sums and contour integral representations. Experiment. Math. 7 (1), pp. 15–35.
  • 23: 14.12 Integral Representations
    For further integral representations see Erdélyi et al. (1953a, pp. 158–159) and Magnus et al. (1966, pp. 184–190), and for contour integrals and other representations see §14.25.
    24: 16.2 Definition and Analytic Properties
    See §16.5 for the definition of F q p ( 𝐚 ; 𝐛 ; z ) as a contour integral when p > q + 1 and none of the a k is a nonpositive integer. …
    25: 9.13 Generalized Airy Functions
    Reid (1972) and Drazin and Reid (1981, Appendix) introduce the following contour integrals in constructing approximate solutions to the Orr–Sommerfeld equation for fluid flow: … Further properties of these functions, and also of similar contour integrals containing an additional factor ( ln t ) q , q = 1 , 2 , , in the integrand, are derived in Reid (1972), Drazin and Reid (1981, Appendix), and Baldwin (1985). …
    26: 2.10 Sums and Sequences
    The asymptotic behavior of entire functions defined by Maclaurin series can be approached by converting the sum into a contour integral by use of the residue theorem and applying the methods of §§2.4 and 2.5. …
    2.10.20 j = 0 n 1 x j ( j ! ) 3 = 1 2 i 𝒞 x t ( Γ ( t + 1 ) ) 3 cot ( π t ) d t ,
    2.10.22 j = 0 n 1 x j ( j ! ) 3 = 1 / 2 n ( 1 / 2 ) x t ( Γ ( t + 1 ) ) 3 d t 𝒞 1 x t ( Γ ( t + 1 ) ) 3 d t e 2 π i t 1 + 𝒞 2 x t ( Γ ( t + 1 ) ) 3 d t e 2 π i t 1 ,
    27: 25.11 Hurwitz Zeta Function
    25.11.30 ζ ( s , a ) = Γ ( 1 s ) 2 π i ( 0 + ) e a z z s 1 1 e z d z , s 1 , a > 0 ,
    28: Bibliography S
  • T. Schmelzer and L. N. Trefethen (2007) Computing the gamma function using contour integrals and rational approximations. SIAM J. Numer. Anal. 45 (2), pp. 558–571.
  • 29: 5.12 Beta Function
    See accompanying text
    Figure 5.12.1: t -plane. Contour for first loop integral for the beta function. Magnify
    See accompanying text
    Figure 5.12.2: t -plane. Contour for second loop integral for the beta function. Magnify
    See accompanying text
    Figure 5.12.3: t -plane. Contour for Pochhammer’s integral. Magnify
    30: 31.9 Orthogonality
    31.9.2 ζ ( 1 + , 0 + , 1 , 0 ) t γ 1 ( 1 t ) δ 1 ( t a ) ϵ 1 w m ( t ) w k ( t ) d t = δ m , k θ m .