About the Project

computation of coefficients

AdvancedHelp

(0.002 seconds)

21—30 of 56 matching pages

21: 10.74 Methods of Computation
§10.74 Methods of Computation
§10.74(vi) Zeros and Associated Values
Hankel Transform
22: Bibliography V
  • H. Van de Vel (1969) On the series expansion method for computing incomplete elliptic integrals of the first and second kinds. Math. Comp. 23 (105), pp. 61–69.
  • J. Van Deun and R. Cools (2008) Integrating products of Bessel functions with an additional exponential or rational factor. Comput. Phys. Comm. 178 (8), pp. 578–590.
  • C. Van Loan (1992) Computational Frameworks for the Fast Fourier Transform. Frontiers in Applied Mathematics, Vol. 10, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
  • A. van Wijngaarden (1953) On the coefficients of the modular invariant J ( τ ) . Nederl. Akad. Wetensch. Proc. Ser. A. 56 = Indagationes Math. 15 56, pp. 389–400.
  • M. N. Vrahatis, T. N. Grapsa, O. Ragos, and F. A. Zafiropoulos (1997a) On the localization and computation of zeros of Bessel functions. Z. Angew. Math. Mech. 77 (6), pp. 467–475.
  • 23: 28.29 Definitions and Basic Properties
    Conversely, for a given λ , the value of ( λ ) is needed for the computation of ν . For this purpose the discriminant can be expressed as an infinite determinant involving the Fourier coefficients of Q ( x ) ; see Magnus and Winkler (1966, §2.3, pp. 28–36). …
    24: Bibliography N
  • National Bureau of Standards (1944) Tables of Lagrangian Interpolation Coefficients. Columbia University Press, New York.
  • National Physical Laboratory (1961) Modern Computing Methods. 2nd edition, Notes on Applied Science, No. 16, Her Majesty’s Stationery Office, London.
  • National Bureau of Standards (1967) Tables Relating to Mathieu Functions: Characteristic Values, Coefficients, and Joining Factors. 2nd edition, National Bureau of Standards Applied Mathematics Series, U.S. Government Printing Office, Washington, D.C..
  • G. Nemes (2013a) An explicit formula for the coefficients in Laplace’s method. Constr. Approx. 38 (3), pp. 471–487.
  • C. J. Noble (2004) Evaluation of negative energy Coulomb (Whittaker) functions. Comput. Phys. Comm. 159 (1), pp. 55–62.
  • 25: Bibliography G
  • GAP (website) The GAP Group, Centre for Interdisciplinary Research in Computational Algebra, University of St. Andrews, United Kingdom.
  • W. Gautschi (1967) Computational aspects of three-term recurrence relations. SIAM Rev. 9 (1), pp. 24–82.
  • W. Gautschi (1970) Efficient computation of the complex error function. SIAM J. Numer. Anal. 7 (1), pp. 187–198.
  • W. Gautschi (1979b) A computational procedure for incomplete gamma functions. ACM Trans. Math. Software 5 (4), pp. 466–481.
  • D. Goldberg (1991) What every computer scientist should know about floating-point arithmetic. ACM Computing Surveys 23 (1), pp. 5–48.
  • 26: 28.34 Methods of Computation
    §28.34 Methods of Computation
    §28.34(i) Characteristic Exponents
    §28.34(ii) Eigenvalues
    §28.34(iii) Floquet Solutions
    §28.34(iv) Modified Mathieu Functions
    27: Bibliography L
  • J. C. Lagarias, V. S. Miller, and A. M. Odlyzko (1985) Computing π ( x ) : The Meissel-Lehmer method. Math. Comp. 44 (170), pp. 537–560.
  • S. Lai and Y. Chiu (1990) Exact computation of the 3 - j and 6 - j symbols. Comput. Phys. Comm. 61 (3), pp. 350–360.
  • S. Lai and Y. Chiu (1992) Exact computation of the 9 - j symbols. Comput. Phys. Comm. 70 (3), pp. 544–556.
  • J. D. Louck (1958) New recursion relation for the Clebsch-Gordan coefficients. Phys. Rev. (2) 110 (4), pp. 815–816.
  • Y. L. Luke (1977b) Algorithms for the Computation of Mathematical Functions. Academic Press, New York.
  • 28: 3.6 Linear Difference Equations
    Difference equations are simple and attractive for computation. … Then computation of w n by forward recursion is unstable. …
    Example 1. Bessel Functions
    Example 2. Weber Function
    The results of the computations are displayed in Table 3.6.1. …
    29: Bibliography O
  • A. B. Olde Daalhuis (1996) Hyperterminants. I. J. Comput. Appl. Math. 76 (1-2), pp. 255–264.
  • A. B. Olde Daalhuis (2000) On the asymptotics for late coefficients in uniform asymptotic expansions of integrals with coalescing saddles. Methods Appl. Anal. 7 (4), pp. 727–745.
  • T. Oliveira e Silva (2006) Computing π ( x ) : The combinatorial method. Revista do DETUA 4 (6), pp. 759–768.
  • F. W. J. Olver (1994a) Asymptotic expansions of the coefficients in asymptotic series solutions of linear differential equations. Methods Appl. Anal. 1 (1), pp. 1–13.
  • M. L. Overton (2001) Numerical Computing with IEEE Floating Point Arithmetic. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
  • 30: 26.5 Lattice Paths: Catalan Numbers
    26.5.1 C ( n ) = 1 n + 1 ( 2 n n ) = 1 2 n + 1 ( 2 n + 1 n ) = ( 2 n n ) ( 2 n n 1 ) = ( 2 n 1 n ) ( 2 n 1 n + 1 ) .
    26.5.5 C ( n + 1 ) = k = 0 n / 2 ( n 2 k ) 2 n 2 k C ( k ) .