About the Project

complex

AdvancedHelp

(0.001 seconds)

31—40 of 621 matching pages

31: 15.11 Riemann’s Differential Equation
15.11.2 a 1 + a 2 + b 1 + b 2 + c 1 + c 2 = 1 .
15.11.3 w = P { α β γ a 1 b 1 c 1 z a 2 b 2 c 2 } .
A conformal mapping of the extended complex plane onto itself has the form …where κ , λ , μ , ν are real or complex constants such that κ ν λ μ = 1 . …
32: 12.1 Special Notation
x , y real variables.
z complex variable.
a , ν real or complex parameters.
33: 15.15 Sums
15.15.1 𝐅 ( a , b c ; 1 z ) = ( 1 z 0 z ) a s = 0 ( a ) s s ! 𝐅 ( s , b c ; 1 z 0 ) ( 1 z z 0 ) s .
Here z 0 ( 0 ) is an arbitrary complex constant and the expansion converges when | z z 0 | > max ( | z 0 | , | z 0 1 | ) . …
34: 4.3 Graphics
§4.3(ii) Complex Arguments: Conformal Maps
Corresponding points share the same letters, with bars signifying complex conjugates. …
§4.3(iii) Complex Arguments: Surfaces
See accompanying text
Figure 4.3.3: ln ( x + i y ) (principal value). … Magnify 3D Help
See accompanying text
Figure 4.3.4: e x + i y . Magnify 3D Help
35: 4.29 Graphics
See accompanying text
Figure 4.29.2: Principal values of arcsinh x and arccosh x . ( arccosh x is complex when x < 1 .) Magnify
See accompanying text
Figure 4.29.4: Principal values of arctanh x and arccoth x . ( arctanh x is complex when x < 1 or x > 1 , and arccoth x is complex when 1 < x < 1 .) Magnify
See accompanying text
Figure 4.29.6: Principal values of arccsch x and arcsech x . ( arcsech x is complex when x < 0 and x > 1 .) Magnify
§4.29(ii) Complex Arguments
The surfaces for the complex hyperbolic and inverse hyperbolic functions are similar to the surfaces depicted in §4.15(iii) for the trigonometric and inverse trigonometric functions. …
36: 1.1 Special Notation
x , y real variables.
z complex variable in §§1.2(i), 1.91.11, real variable in §§1.51.6.
w complex variable in §§1.91.11.
𝐄 n the space of all n -dimensional vectors.
𝐀 ¯ complex conjugate of the matrix 𝐀
In the physics, applied maths, and engineering literature a common alternative to a ¯ is a , a being a complex number or a matrix; the Hermitian conjugate of 𝐀 is usually being denoted 𝐀 .
37: 31.11 Expansions in Series of Hypergeometric Functions
31.11.2 P j = P { 0 1 0 0 λ + j z 1 γ 1 δ μ j } ,
31.11.3 λ + μ = γ + δ 1 = α + β ϵ .
31.11.7 L j = a ( λ + j ) ( μ j ) q + ( j + α μ ) ( j + β μ ) ( j + γ μ ) ( j + λ ) ( 2 j + λ μ ) ( 2 j + λ μ + 1 ) + ( j α + λ ) ( j β + λ ) ( j γ + λ ) ( j μ ) ( 2 j + λ μ ) ( 2 j + λ μ 1 ) ,
31.11.12 P j 5 = ( α ) j ( 1 γ + α ) j ( 1 + α β + ϵ ) 2 j z α j F 1 2 ( α + j , 1 γ + α + j 1 + α β + ϵ + 2 j ; 1 z ) ,
38: 31.9 Orthogonality
31.9.2 ζ ( 1 + , 0 + , 1 , 0 ) t γ 1 ( 1 t ) δ 1 ( t a ) ϵ 1 w m ( t ) w k ( t ) d t = δ m , k θ m .
31.9.3 θ m = ( 1 e 2 π i γ ) ( 1 e 2 π i δ ) ζ γ ( 1 ζ ) δ ( ζ a ) ϵ f 0 ( q , ζ ) f 1 ( q , ζ ) q 𝒲 { f 0 ( q , ζ ) , f 1 ( q , ζ ) } | q = q m ,
31.9.6 ρ ( s , t ) = ( s t ) ( s t ) γ 1 ( ( s 1 ) ( t 1 ) ) δ 1 ( ( s a ) ( t a ) ) ϵ 1 ,
39: 22.8 Addition Theorems
For u , v , and with the common modulus k suppressed:
22.8.1 sn ( u + v ) = sn u cn v dn v + sn v cn u dn u 1 k 2 sn 2 u sn 2 v ,
22.8.2 cn ( u + v ) = cn u cn v sn u dn u sn v dn v 1 k 2 sn 2 u sn 2 v ,
For u , v , and with the common modulus k suppressed: …
22.8.19 z 1 + z 2 + z 3 + z 4 = 0 .
40: 31.2 Differential Equations
All other homogeneous linear differential equations of the second order having four regular singularities in the extended complex plane, { } , can be transformed into (31.2.1). …
31.2.2 w ( z ) = z γ / 2 ( z 1 ) δ / 2 ( z a ) ϵ / 2 W ( z ) ,
31.2.5 z = sin 2 θ ,
31.2.6 d 2 w d θ 2 + ( ( 2 γ 1 ) cot θ ( 2 δ 1 ) tan θ ϵ sin ( 2 θ ) a sin 2 θ ) d w d θ + 4 α β sin 2 θ q a sin 2 θ w = 0 .