About the Project

change of parameter

AdvancedHelp

(0.003 seconds)

41—50 of 54 matching pages

41: 2.3 Integrals of a Real Variable
Then … Then the series obtained by substituting (2.3.7) into (2.3.1) and integrating formally term by term yields an asymptotic expansion: … When the parameter x is large the contributions from the real and imaginary parts of the integrand in …However, cancellation does not take place near the endpoints, owing to lack of symmetry, nor in the neighborhoods of zeros of p ( t ) because p ( t ) changes relatively slowly at these stationary points. … A uniform approximation can be constructed by quadratic change of integration variable: …
42: 10.17 Asymptotic Expansions for Large Argument
10.17.1 a k ( ν ) = ( 4 ν 2 1 2 ) ( 4 ν 2 3 2 ) ( 4 ν 2 ( 2 k 1 ) 2 ) k ! 8 k = ( 1 2 ν ) k ( 1 2 + ν ) k ( 2 ) k k ! , k 1 ,
10.17.2 ω = z 1 2 ν π 1 4 π ,
10.17.8 b k ( ν ) = ( ( 4 ν 2 1 2 ) ( 4 ν 2 3 2 ) ( 4 ν 2 ( 2 k 3 ) 2 ) ) ( 4 ν 2 + 4 k 2 1 ) k ! 8 k .
where 𝒱 denotes the variational operator (2.3.6), and the paths of variation are subject to the condition that | t | changes monotonically. …
10.17.17 R ± ( ν , z ) = ( 1 ) 2 cos ( ν π ) ( k = 0 m 1 ( ± i ) k a k ( ν ) z k G k ( 2 i z ) + R m , ± ( ν , z ) ) ,
43: 19.28 Integrals of Elliptic Integrals
19.28.1 0 1 t σ 1 R F ( 0 , t , 1 ) d t = 1 2 ( B ( σ , 1 2 ) ) 2 ,
19.28.2 0 1 t σ 1 R G ( 0 , t , 1 ) d t = σ 4 σ + 2 ( B ( σ , 1 2 ) ) 2 ,
19.28.3 0 1 t σ 1 ( 1 t ) R D ( 0 , t , 1 ) d t = 3 4 σ + 2 ( B ( σ , 1 2 ) ) 2 .
19.28.4 0 1 t σ 1 ( 1 t ) c 1 R a ( b 1 , b 2 ; t , 1 ) d t = Γ ( c ) Γ ( σ ) Γ ( σ + b 2 a ) Γ ( σ + c a ) Γ ( σ + b 2 ) , c = b 1 + b 2 > 0 , σ > max ( 0 , a b 2 ) .
44: 28.6 Expansions for Small q
28.6.1 a 0 ( q ) = 1 2 q 2 + 7 128 q 4 29 2304 q 6 + 68687 188 74368 q 8 + ,
28.6.4 a 2 ( q ) = 4 + 5 12 q 2 763 13824 q 4 + 10 02401 796 26240 q 6 16690 68401 45 86471 42400 q 8 + ,
28.6.5 b 2 ( q ) = 4 1 12 q 2 + 5 13824 q 4 289 796 26240 q 6 + 21391 45 86471 42400 q 8 + ,
28.6.8 a 4 ( q ) = 16 + 1 30 q 2 + 433 8 64000 q 4 5701 27216 00000 q 6 + ,
For the corresponding expansions of se m ( z , q ) for m = 3 , 4 , 5 , change cos to sin everywhere in (28.6.26). …
45: 3.5 Quadrature
3.5.39 g ( t ) = 1 2 π i σ i σ + i e t p G ( p ) d p ,
The integral (3.5.39) has the form (3.5.35) if we set ζ = t p , c = t σ , and f ( ζ ) = t 1 ζ s G ( ζ / t ) . … When λ is large the integral becomes exponentially small, and application of the quadrature rule of §3.5(viii) is useless. …
3.5.46 f ( x ) = 1 π f ( t ) t x d t , x ,
46: Bibliography K
  • A. Khare and U. Sukhatme (2004) Connecting Jacobi elliptic functions with different modulus parameters. Pramana 63 (5), pp. 921–936.
  • S. Kida (1981) A vortex filament moving without change of form. J. Fluid Mech. 112, pp. 397–409.
  • U. J. Knottnerus (1960) Approximation Formulae for Generalized Hypergeometric Functions for Large Values of the Parameters. J. B. Wolters, Groningen.
  • 47: 27.2 Functions
    27.2.3 π ( x ) x ln x .
    27.2.4 p n n ln n .
    27.2.10 σ α ( n ) = d | n d α ,
    is the sum of the α th powers of the divisors of n , where the exponent α can be real or complex. …
    27.2.14 Λ ( n ) = ln p , n = p a ,
    48: 28.31 Equations of Whittaker–Hill and Ince
    When p is a nonnegative integer, the parameter η can be chosen so that solutions of (28.31.3) are trigonometric polynomials, called Ince polynomials. …
    28.31.11 S 2 n + 1 2 m + 1 ( z , ξ ) with  p = 2 n + 1 , S 2 n + 2 2 m + 2 ( z , ξ ) with  p = 2 n + 2 ,
    28.31.18 w ′′ + ( η 1 8 ξ 2 ( p + 1 ) ξ cos ( 2 z ) + 1 8 ξ 2 cos ( 4 z ) ) w = 0 ,
    For change of sign of ξ , …
    49: 10.21 Zeros
    where t is a parameter, then
    10.21.5 𝒞 ν ( ρ ν ) = 𝒞 ν 1 ( ρ ν ) = 𝒞 ν + 1 ( ρ ν ) .
    The parameter t may be regarded as a continuous variable and ρ ν , σ ν as functions ρ ν ( t ) , σ ν ( t ) of t . …
    10.21.21 j ν , m ′′ c μ + 7 8 c 28 μ 2 + 424 μ + 1724 3 ( 8 c ) 3 ,
    Corresponding uniform approximations for y ν , m , Y ν ( y ν , m ) , y ν , m , and Y ν ( y ν , m ) , are obtained from (10.21.41)–(10.21.44) by changing the symbols j , J , Ai , Ai , a m , and a m to y , Y , Bi , Bi , b m , and b m , respectively. …
    50: Bibliography B
  • K. A. Berrington, P. G. Burke, J. J. Chang., A. T. Chivers, W. D. Robb, and K. T. Taylor (1974) A general program to calculate atomic continuum processes using the R-matrix method. Comput. Phys. Comm. 8 (3), pp. 149–198.
  • C. Bingham, T. Chang, and D. Richards (1992) Approximating the matrix Fisher and Bingham distributions: Applications to spherical regression and Procrustes analysis. J. Multivariate Anal. 41 (2), pp. 314–337.
  • G. Blanch and D. S. Clemm (1969) Mathieu’s Equation for Complex Parameters. Tables of Characteristic Values. U.S. Government Printing Office, Washington, D.C..
  • G. Blanch and I. Rhodes (1955) Table of characteristic values of Mathieu’s equation for large values of the parameter. J. Washington Acad. Sci. 45 (6), pp. 166–196.