About the Project

bibasic sums and series

AdvancedHelp

(0.001 seconds)

11—20 of 197 matching pages

11: 27.5 Inversion Formulas
27.5.6 G ( x ) = n x F ( x n ) F ( x ) = n x μ ( n ) G ( x n ) ,
27.5.7 G ( x ) = m = 1 F ( m x ) m s F ( x ) = m = 1 μ ( m ) G ( m x ) m s ,
12: 5.7 Series Expansions
5.7.3 ln Γ ( 1 + z ) = ln ( 1 + z ) + z ( 1 γ ) + k = 2 ( 1 ) k ( ζ ( k ) 1 ) z k k , | z | < 2 .
13: 8.7 Series Expansions
8.7.6 Γ ( a , x ) = x a e x n = 0 L n ( a ) ( x ) n + 1 , x > 0 , a < 1 2 .
14: 1.8 Fourier Series
Then the series (1.8.1) converges to the sum
1.8.16 n = e ( n + x ) 2 ω = π ω ( 1 + 2 n = 1 e n 2 π 2 / ω cos ( 2 n π x ) ) , ω > 0 .
15: 28.30 Expansions in Series of Eigenfunctions
§28.30 Expansions in Series of Eigenfunctions
Then every continuous 2 π -periodic function f ( x ) whose second derivative is square-integrable over the interval [ 0 , 2 π ] can be expanded in a uniformly and absolutely convergent series
28.30.3 f ( x ) = m = 0 f m w m ( x ) ,
16: 25.8 Sums
25.8.1 k = 2 ( ζ ( k ) 1 ) = 1 .
25.8.2 k = 0 Γ ( s + k ) ( k + 1 ) ! ( ζ ( s + k ) 1 ) = Γ ( s 1 ) , s 1 , 0 , 1 , 2 , .
25.8.5 k = 2 ζ ( k ) z k = γ z z ψ ( 1 z ) , | z | < 1 .
25.8.9 k = 1 ζ ( 2 k ) ( 2 k + 1 ) 2 2 k = 1 2 1 2 ln 2 .
25.8.10 k = 1 ζ ( 2 k ) ( 2 k + 1 ) ( 2 k + 2 ) 2 2 k = 1 4 7 4 π 2 ζ ( 3 ) .
17: 25.16 Mathematical Applications
25.16.1 ψ ( x ) = m = 1 p m x ln p ,
25.16.5 H ( s ) = n = 1 H n n s ,
25.16.11 H ( s , z ) = n = 1 1 n s m = 1 n 1 m z , ( s + z ) > 1 ,
25.16.14 r = 1 k = 1 r 1 r k ( r + k ) = 5 4 ζ ( 3 ) ,
25.16.15 r = 1 k = 1 r 1 r 2 ( r + k ) = 3 4 ζ ( 3 ) .
18: 9.19 Approximations
The constants a and b are chosen numerically, with a view to equalizing the effort required for summing the series. …
19: 24.8 Series Expansions
24.8.9 E 2 n = ( 1 ) n k = 1 k 2 n cosh ( 1 2 π k ) 4 k = 0 ( 1 ) k ( 2 k + 1 ) 2 n e 2 π ( 2 k + 1 ) 1 , n = 1 , 2 , .
20: 28.11 Expansions in Series of Mathieu Functions
28.11.7 sin ( 2 m + 2 ) z = n = 0 B 2 m + 2 2 n + 2 ( q ) se 2 n + 2 ( z , q ) .