About the Project

auxiliary functions

AdvancedHelp

(0.002 seconds)

21—30 of 30 matching pages

21: 6.5 Further Interrelations
22: 7.14 Integrals
7.14.5 0 e a t C ( t ) d t = 1 a f ( a π ) , a > 0 ,
7.14.6 0 e a t S ( t ) d t = 1 a g ( a π ) , a > 0 ,
23: 9.18 Tables
  • Miller (1946) tabulates Ai ( x ) , Ai ( x ) for x = 20 ( .01 ) 2 ; log 10 Ai ( x ) , Ai ( x ) / Ai ( x ) for x = 0 ( .1 ) 25 ( 1 ) 75 ; Bi ( x ) , Bi ( x ) for x = 10 ( .1 ) 2.5 ; log 10 Bi ( x ) , Bi ( x ) / Bi ( x ) for x = 0 ( .1 ) 10 ; M ( x ) , N ( x ) , θ ( x ) , ϕ ( x ) (respectively F ( x ) , G ( x ) , χ ( x ) , ψ ( x ) ) for x = 80 ( 1 ) 30 ( .1 ) 0 . Precision is generally 8D; slightly less for some of the auxiliary functions. Extracts from these tables are included in Abramowitz and Stegun (1964, Chapter 10), together with some auxiliary functions for large arguments.

  • Fox (1960, Table 3) tabulates 2 π 1 / 2 x 1 / 4 exp ( 2 3 x 3 / 2 ) Ai ( x ) , 2 π 1 / 2 x 1 / 4 exp ( 2 3 x 3 / 2 ) Ai ( x ) , π 1 / 2 x 1 / 4 exp ( 2 3 x 3 / 2 ) Bi ( x ) , and π 1 / 2 x 1 / 4 exp ( 2 3 x 3 / 2 ) Bi ( x ) for 3 2 x 3 / 2 = 0 ( .001 ) 0.05 , together with similar auxiliary functions for negative values of x . Precision is 10D.

  • 24: 10.75 Tables
  • British Association for the Advancement of Science (1937) tabulates J 0 ( x ) , J 1 ( x ) , x = 0 ( .001 ) 16 ( .01 ) 25 , 10D; Y 0 ( x ) , Y 1 ( x ) , x = 0.01 ( .01 ) 25 , 8–9S or 8D. Also included are auxiliary functions to facilitate interpolation of the tables of Y 0 ( x ) , Y 1 ( x ) for small values of x , as well as auxiliary functions to compute all four functions for large values of x .

  • British Association for the Advancement of Science (1937) tabulates I 0 ( x ) , I 1 ( x ) , x = 0 ( .001 ) 5 , 7–8D; K 0 ( x ) , K 1 ( x ) , x = 0.01 ( .01 ) 5 , 7–10D; e x I 0 ( x ) , e x I 1 ( x ) , e x K 0 ( x ) , e x K 1 ( x ) , x = 5 ( .01 ) 10 ( .1 ) 20 , 8D. Also included are auxiliary functions to facilitate interpolation of the tables of K 0 ( x ) , K 1 ( x ) for small values of x .

  • Young and Kirk (1964) tabulates ber n x , bei n x , ker n x , kei n x , n = 0 , 1 , x = 0 ( .1 ) 10 , 15D; ber n x , bei n x , ker n x , kei n x , modulus and phase functions M n ( x ) , θ n ( x ) , N n ( x ) , ϕ n ( x ) , n = 0 , 1 , 2 , x = 0 ( .01 ) 2.5 , 8S, and n = 0 ( 1 ) 10 , x = 0 ( .1 ) 10 , 7S. Also included are auxiliary functions to facilitate interpolation of the tables for n = 0 ( 1 ) 10 for small values of x . (Concerning the phase functions see §10.68(iv).)

  • 25: 10.74 Methods of Computation
    Temme (1997) shows how to overcome this difficulty by use of the Maclaurin expansions for these coefficients or by use of auxiliary functions. …
    26: 1.14 Integral Transforms
    1.14.21 f ( s a ) = f a ( s ) ,
    1.14.22 f a + ( s ) = e a s f ( s ) ,
    1.14.23 ( 1 ) n d n d s n f ( s ) = f n ( s ) , n = 1 , 2 , 3 , ,
    1.14.24 s f ( u ) d u = f 1 ( s ) ,
    27: Bibliography F
  • H. E. Fettis and J. C. Caslin (1969) A Table of the Complete Elliptic Integral of the First Kind for Complex Values of the Modulus. Part I. Technical report Technical Report ARL 69-0172, Aerospace Research Laboratories, Office of Aerospace Research, Wright-Patterson Air Force Base, Ohio.
  • 28: Bibliography S
  • D. V. Slavić (1974) Complements to asymptotic development of sine cosine integrals, and auxiliary functions. Univ. Beograd. Publ. Elecktrotehn. Fak., Ser. Mat. Fiz. 461–497, pp. 185–191.
  • 29: 14.33 Tables
  • Žurina and Karmazina (1964, 1965) tabulate the conical functions 𝖯 1 2 + i τ ( x ) for τ = 0 ( .01 ) 50 , x = 0.9 ( .1 ) 0.9 , 7S; P 1 2 + i τ ( x ) for τ = 0 ( .01 ) 50 , x = 1.1 ( .1 ) 2 ( .2 ) 5 ( .5 ) 10 ( 10 ) 60 , 7D. Auxiliary tables are included to facilitate computation for larger values of τ when 1 < x < 1 .

  • Žurina and Karmazina (1963) tabulates the conical functions 𝖯 1 2 + i τ 1 ( x ) for τ = 0 ( .01 ) 25 , x = 0.9 ( .1 ) 0.9 , 7S; P 1 2 + i τ 1 ( x ) for τ = 0 ( .01 ) 25 , x = 1.1 ( .1 ) 2 ( .2 ) 5 ( .5 ) 10 ( 10 ) 60 , 7S. Auxiliary tables are included to assist computation for larger values of τ when 1 < x < 1 .

  • 30: Bibliography K
  • S. L. Kalla (1992) On the evaluation of the Gauss hypergeometric function. C. R. Acad. Bulgare Sci. 45 (6), pp. 35–36.
  • R. P. Kanwal (1983) Generalized functions. Mathematics in Science and Engineering, Vol. 171, Academic Press, Inc., Orlando, FL.
  • E. L. Kaplan (1948) Auxiliary table for the incomplete elliptic integrals. J. Math. Physics 27, pp. 11–36.
  • K. S. Kölbig (1970) Complex zeros of an incomplete Riemann zeta function and of the incomplete gamma function. Math. Comp. 24 (111), pp. 679–696.
  • K. S. Kölbig (1972c) Programs for computing the logarithm of the gamma function, and the digamma function, for complex argument. Comput. Phys. Comm. 4, pp. 221–226.