About the Project

asymptotic%20solutions%20of%20differential%20equations

AdvancedHelp

(0.007 seconds)

11—16 of 16 matching pages

11: Bibliography
  • A. S. Abdullaev (1985) Asymptotics of solutions of the generalized sine-Gordon equation, the third Painlevé equation and the d’Alembert equation. Dokl. Akad. Nauk SSSR 280 (2), pp. 265–268 (Russian).
  • H. Airault (1979) Rational solutions of Painlevé equations. Stud. Appl. Math. 61 (1), pp. 31–53.
  • F. M. Arscott (1956) Perturbation solutions of the ellipsoidal wave equation. Quart. J. Math. Oxford Ser. (2) 7, pp. 161–174.
  • U. M. Ascher, R. M. M. Mattheij, and R. D. Russell (1995) Numerical Solution of Boundary Value Problems for Ordinary Differential Equations. Classics in Applied Mathematics, Vol. 13, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
  • U. M. Ascher and L. R. Petzold (1998) Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
  • 12: Bibliography M
  • R. S. Maier (2007) The 192 solutions of the Heun equation. Math. Comp. 76 (258), pp. 811–843.
  • J. C. P. Miller (1946) The Airy Integral, Giving Tables of Solutions of the Differential Equation y ′′ = x y . British Association for the Advancement of Science, Mathematical Tables Part-Vol. B, Cambridge University Press, Cambridge.
  • J. C. P. Miller (1950) On the choice of standard solutions for a homogeneous linear differential equation of the second order. Quart. J. Mech. Appl. Math. 3 (2), pp. 225–235.
  • P. Moon and D. E. Spencer (1971) Field Theory Handbook. Including Coordinate Systems, Differential Equations and Their Solutions. 2nd edition, Springer-Verlag, Berlin.
  • B. T. M. Murphy and A. D. Wood (1997) Hyperasymptotic solutions of second-order ordinary differential equations with a singularity of arbitrary integer rank. Methods Appl. Anal. 4 (3), pp. 250–260.
  • 13: 12.10 Uniform Asymptotic Expansions for Large Parameter
    §12.10 Uniform Asymptotic Expansions for Large Parameter
    Lastly, the function g ( μ ) in (12.10.3) and (12.10.4) has the asymptotic expansion: … The proof of the double asymptotic property then follows with the aid of error bounds; compare §10.41(iv). …
    14: Bibliography G
  • L. Gårding (1947) The solution of Cauchy’s problem for two totally hyperbolic linear differential equations by means of Riesz integrals. Ann. of Math. (2) 48 (4), pp. 785–826.
  • A. Gil, J. Segura, and N. M. Temme (2004b) Computing solutions of the modified Bessel differential equation for imaginary orders and positive arguments. ACM Trans. Math. Software 30 (2), pp. 145–158.
  • V. I. Gromak and N. A. Lukaševič (1982) Special classes of solutions of Painlevé equations. Differ. Uravn. 18 (3), pp. 419–429 (Russian).
  • V. I. Gromak (1976) The solutions of Painlevé’s fifth equation. Differ. Uravn. 12 (4), pp. 740–742 (Russian).
  • V. I. Gromak (1978) One-parameter systems of solutions of Painlevé equations. Differ. Uravn. 14 (12), pp. 2131–2135 (Russian).
  • 15: 18.40 Methods of Computation
    Usually, however, other methods are more efficient, especially the numerical solution of difference equations3.6) and the application of uniform asymptotic expansions (when available) for OP’s of large degree. … … In what follows we consider only the simple, illustrative, case that μ ( x ) is continuously differentiable so that d μ ( x ) = w ( x ) d x , with w ( x ) real, positive, and continuous on a real interval [ a , b ] . The strategy will be to: 1) use the moments to determine the recursion coefficients α n , β n of equations (18.2.11_5) and (18.2.11_8); then, 2) to construct the quadrature abscissas x i and weights (or Christoffel numbers) w i from the J-matrix of §3.5(vi), equations (3.5.31) and(3.5.32). … Results of low ( 2 to 3 decimal digits) precision for w ( x ) are easily obtained for N 10 to 20 . … Equation (18.40.7) provides step-histogram approximations to a x d μ ( x ) , as shown in Figure 18.40.1 for N = 12 and 120 , shown here for the repulsive Coulomb–Pollaczek OP’s of Figure 18.39.2, with the parameters as listed therein. …
    16: Bibliography C
  • T. W. Chaundy (1969) Elementary Differential Equations. Clarendon Press, Oxford.
  • R. Chelluri, L. B. Richmond, and N. M. Temme (2000) Asymptotic estimates for generalized Stirling numbers. Analysis (Munich) 20 (1), pp. 1–13.
  • D. S. Clemm (1969) Algorithm 352: Characteristic values and associated solutions of Mathieu’s differential equation. Comm. ACM 12 (7), pp. 399–407.
  • C. W. Clenshaw (1957) The numerical solution of linear differential equations in Chebyshev series. Proc. Cambridge Philos. Soc. 53 (1), pp. 134–149.
  • M. D. Cooper, R. H. Jeppesen, and M. B. Johnson (1979) Coulomb effects in the Klein-Gordon equation for pions. Phys. Rev. C 20 (2), pp. 696–704.