About the Project

asymptotic%20behavior%20of%20coefficients

AdvancedHelp

(0.002 seconds)

11—20 of 434 matching pages

11: 2.11 Remainder Terms; Stokes Phenomenon
§2.11(i) Numerical Use of Asymptotic Expansions
Secondly, the asymptotic series represents an infinite class of functions, and the remainder depends on which member we have in mind. … For example, using double precision d 20 is found to agree with (2.11.31) to 13D. …
12: 27.2 Functions
Euclid’s Elements (Euclid (1908, Book IX, Proposition 20)) gives an elegant proof that there are infinitely many primes. … Gauss and Legendre conjectured that π ( x ) is asymptotic to x / ln x as x :
27.2.3 π ( x ) x ln x .
An equivalent form states that the n th prime p n (when the primes are listed in increasing order) is asymptotic to n ln n as n :
27.2.4 p n n ln n .
13: 12.11 Zeros
§12.11(ii) Asymptotic Expansions of Large Zeros
When a > 1 2 the zeros are asymptotically given by z a , s and z a , s ¯ , where s is a large positive integer and …
§12.11(iii) Asymptotic Expansions for Large Parameter
For large negative values of a the real zeros of U ( a , x ) , U ( a , x ) , V ( a , x ) , and V ( a , x ) can be approximated by reversion of the Airy-type asymptotic expansions of §§12.10(vii) and 12.10(viii). …The first two coefficients are given by …
14: Bibliography F
  • FDLIBM (free C library)
  • S. Fempl (1960) Sur certaines sommes des intégral-cosinus. Bull. Soc. Math. Phys. Serbie 12, pp. 13–20 (French).
  • H. E. Fettis and J. C. Caslin (1964) Tables of Elliptic Integrals of the First, Second, and Third Kind. Technical report Technical Report ARL 64-232, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio.
  • C. L. Frenzen (1987b) On the asymptotic expansion of Mellin transforms. SIAM J. Math. Anal. 18 (1), pp. 273–282.
  • G. Freud (1969) On weighted polynomial approximation on the whole real axis. Acta Math. Acad. Sci. Hungar. 20, pp. 223–225.
  • 15: 5.11 Asymptotic Expansions
    §5.11 Asymptotic Expansions
    and … Wrench (1968) gives exact values of g k up to g 20 . …
    §5.11(iii) Ratios
    16: 26.5 Lattice Paths: Catalan Numbers
    26.5.1 C ( n ) = 1 n + 1 ( 2 n n ) = 1 2 n + 1 ( 2 n + 1 n ) = ( 2 n n ) ( 2 n n 1 ) = ( 2 n 1 n ) ( 2 n 1 n + 1 ) .
    Table 26.5.1: Catalan numbers.
    n C ( n ) n C ( n ) n C ( n )
    6 132 13 7 42900 20 65641 20420
    26.5.5 C ( n + 1 ) = k = 0 n / 2 ( n 2 k ) 2 n 2 k C ( k ) .
    17: 25.12 Polylogarithms
    See accompanying text
    Figure 25.12.1: Dilogarithm function Li 2 ( x ) , 20 x < 1 . Magnify
    See accompanying text
    Figure 25.12.2: Absolute value of the dilogarithm function | Li 2 ( x + i y ) | , 20 x 20 , 20 y 20 . … Magnify 3D Help
    G s ( x ) = Li s + 1 ( e x ) .
    For a uniform asymptotic approximation for F s ( x ) see Temme and Olde Daalhuis (1990).
    18: Bibliography O
  • A. M. Odlyzko (1995) Asymptotic Enumeration Methods. In Handbook of Combinatorics, Vol. 2, L. Lovász, R. L. Graham, and M. Grötschel (Eds.), pp. 1063–1229.
  • A. B. Olde Daalhuis (2000) On the asymptotics for late coefficients in uniform asymptotic expansions of integrals with coalescing saddles. Methods Appl. Anal. 7 (4), pp. 727–745.
  • J. Oliver (1977) An error analysis of the modified Clenshaw method for evaluating Chebyshev and Fourier series. J. Inst. Math. Appl. 20 (3), pp. 379–391.
  • F. W. J. Olver (1970) A paradox in asymptotics. SIAM J. Math. Anal. 1 (4), pp. 533–534.
  • F. W. J. Olver (1994a) Asymptotic expansions of the coefficients in asymptotic series solutions of linear differential equations. Methods Appl. Anal. 1 (1), pp. 1–13.
  • 19: 28.8 Asymptotic Expansions for Large q
    §28.8 Asymptotic Expansions for Large q
    §28.8(ii) Sips’ Expansions
    §28.8(iii) Goldstein’s Expansions
    Barrett’s Expansions
    20: Bibliography C
  • R. Chelluri, L. B. Richmond, and N. M. Temme (2000) Asymptotic estimates for generalized Stirling numbers. Analysis (Munich) 20 (1), pp. 1–13.
  • L. Chen, M. E. H. Ismail, and P. Simeonov (1999) Asymptotics of Racah coefficients and polynomials. J. Phys. A 32 (3), pp. 537–553.
  • M. Colman, A. Cuyt, and J. Van Deun (2011) Validated computation of certain hypergeometric functions. ACM Trans. Math. Software 38 (2), pp. Art. 11, 20.
  • M. D. Cooper, R. H. Jeppesen, and M. B. Johnson (1979) Coulomb effects in the Klein-Gordon equation for pions. Phys. Rev. C 20 (2), pp. 696–704.
  • O. Costin (1999) Correlation between pole location and asymptotic behavior for Painlevé I solutions. Comm. Pure Appl. Math. 52 (4), pp. 461–478.