About the Project

as%20Bernoulli%20or%20Euler%20polynomials

AdvancedHelp

(0.004 seconds)

11—20 of 28 matching pages

11: 5.11 Asymptotic Expansions
For the Bernoulli numbers B 2 k , see §24.2(i). … The scaled gamma function Γ ( z ) is defined in (5.11.3) and its main property is Γ ( z ) 1 as z in the sector | ph z | π δ . Wrench (1968) gives exact values of g k up to g 20 . … where h ( ) is fixed, and B k ( h ) is the Bernoulli polynomial defined in §24.2(i). … In terms of generalized Bernoulli polynomials B n ( ) ( x ) 24.16(i)), we have for k = 0 , 1 , , …
12: Bibliography N
  • D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
  • W. J. Nellis and B. C. Carlson (1966) Reduction and evaluation of elliptic integrals. Math. Comp. 20 (94), pp. 223–231.
  • E. W. Ng and M. Geller (1969) A table of integrals of the error functions. J. Res. Nat. Bur. Standards Sect B. 73B, pp. 1–20.
  • N. Nielsen (1923) Traité Élémentaire des Nombres de Bernoulli. Gauthier-Villars, Paris.
  • N. E. Nörlund (1922) Mémoire sur les polynomes de Bernoulli. Acta Math. 43, pp. 121–196 (French).
  • 13: 25.11 Hurwitz Zeta Function
    §25.11(iii) Representations by the Euler–Maclaurin Formula
    25.11.6 ζ ( s , a ) = 1 a s ( 1 2 + a s 1 ) s ( s + 1 ) 2 0 B ~ 2 ( x ) B 2 ( x + a ) s + 2 d x , s 1 , s > 1 , a > 0 .
    25.11.7 ζ ( s , a ) = 1 a s + 1 ( 1 + a ) s ( 1 2 + 1 + a s 1 ) + k = 1 n ( s + 2 k 2 2 k 1 ) B 2 k 2 k 1 ( 1 + a ) s + 2 k 1 ( s + 2 n 2 n + 1 ) 1 B ~ 2 n + 1 ( x ) ( x + a ) s + 2 n + 1 d x , s 1 , a > 0 , n = 1 , 2 , 3 , , s > 2 n .
    For B ~ n ( x ) see §24.2(iii). …
    25.11.14 ζ ( n , a ) = B n + 1 ( a ) n + 1 , n = 0 , 1 , 2 , .
    14: Bibliography W
  • S. S. Wagstaff (2002) Prime Divisors of the Bernoulli and Euler Numbers. In Number Theory for the Millennium, III (Urbana, IL, 2000), pp. 357–374.
  • P. L. Walker (2007) The zeros of Euler’s psi function and its derivatives. J. Math. Anal. Appl. 332 (1), pp. 607–616.
  • X.-S. Wang and R. Wong (2011) Global asymptotics of the Meixner polynomials. Asymptotic Analysis 75 (3-4), pp. 211–231.
  • R. S. Ward (1987) The Nahm equations, finite-gap potentials and Lamé functions. J. Phys. A 20 (10), pp. 2679–2683.
  • J. A. Wilson (1978) Hypergeometric Series, Recurrence Relations and Some New Orthogonal Polynomials. Ph.D. Thesis, University of Wisconsin, Madison, WI.
  • 15: Bibliography P
  • A. M. Parkhurst and A. T. James (1974) Zonal Polynomials of Order 1 Through 12 . In Selected Tables in Mathematical Statistics, H. L. Harter and D. B. Owen (Eds.), Vol. 2, pp. 199–388.
  • P. I. Pastro (1985) Orthogonal polynomials and some q -beta integrals of Ramanujan. J. Math. Anal. Appl. 112 (2), pp. 517–540.
  • K. Pearson (Ed.) (1965) Tables of the Incomplete Γ -function. Biometrika Office, Cambridge University Press, Cambridge.
  • R. Piessens (1982) Automatic computation of Bessel function integrals. Comput. Phys. Comm. 25 (3), pp. 289–295.
  • S. Porubský (1998) Voronoi type congruences for Bernoulli numbers. In Voronoi’s Impact on Modern Science. Book I, P. Engel and H. Syta (Eds.),
  • 16: Bibliography R
  • M. Rahman (1981) A non-negative representation of the linearization coefficients of the product of Jacobi polynomials. Canad. J. Math. 33 (4), pp. 915–928.
  • M. Rahman (2001) The Associated Classical Orthogonal Polynomials. In Special Functions 2000: Current Perspective and Future Directions (Tempe, AZ), NATO Sci. Ser. II Math. Phys. Chem., Vol. 30, pp. 255–279.
  • S. Ramanujan (1927) Some properties of Bernoulli’s numbers (J. Indian Math. Soc. 3 (1911), 219–234.). In Collected Papers,
  • J. Raynal (1979) On the definition and properties of generalized 6 - j  symbols. J. Math. Phys. 20 (12), pp. 2398–2415.
  • C. H. Rowe (1931) A proof of the asymptotic series for log Γ ( z ) and log Γ ( z + a ) . Ann. of Math. (2) 32 (1), pp. 10–16.
  • 17: Bibliography G
  • W. Gautschi (1994) Algorithm 726: ORTHPOL — a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules. ACM Trans. Math. Software 20 (1), pp. 21–62.
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • K. Girstmair (1990a) A theorem on the numerators of the Bernoulli numbers. Amer. Math. Monthly 97 (2), pp. 136–138.
  • H. W. Gould (1972) Explicit formulas for Bernoulli numbers. Amer. Math. Monthly 79, pp. 44–51.
  • Ya. I. Granovskiĭ, I. M. Lutzenko, and A. S. Zhedanov (1992) Mutual integrability, quadratic algebras, and dynamical symmetry. Ann. Phys. 217 (1), pp. 1–20.
  • 18: Bibliography B
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • J. Brillhart (1969) On the Euler and Bernoulli polynomials. J. Reine Angew. Math. 234, pp. 45–64.
  • T. Burić and N. Elezović (2011) Bernoulli polynomials and asymptotic expansions of the quotient of gamma functions. J. Comput. Appl. Math. 235 (11), pp. 3315–3331.
  • P. L. Butzer, M. Hauss, and M. Leclerc (1992) Bernoulli numbers and polynomials of arbitrary complex indices. Appl. Math. Lett. 5 (6), pp. 83–88.
  • 19: 26.14 Permutations: Order Notation
    In this subsection S ( n , k ) is again the Stirling number of the second kind (§26.8), and B m is the m th Bernoulli number (§24.2(i)). …
    26.14.11 B m = m 2 m ( 2 m 1 ) k = 0 m 2 ( 1 ) k m 1 k , m 2 .
    20: 32.8 Rational Solutions
    where the Q n ( z ) are monic polynomials (coefficient of highest power of z is 1 ) satisfying … Next, let p m ( z ) be the polynomials defined by p m ( z ) = 0 for m < 0 , and … In the general case assume γ δ 0 , so that as in §32.2(ii) we may set γ = 1 and δ = 1 . …where P m ( z ) and Q m ( z ) are polynomials of degree m , with no common zeros. … where λ , μ are constants, and P n 1 ( z ) , Q n ( z ) are polynomials of degrees n 1 and n , respectively, with no common zeros. …