About the Project

arguments e±iπ/3

AdvancedHelp

(0.003 seconds)

31—40 of 539 matching pages

31: 33.11 Asymptotic Expansions for Large ρ
33.11.1 H ± ( η , ρ ) e ± i θ ( η , ρ ) k = 0 ( a ) k ( b ) k k ! ( ± 2 i ρ ) k ,
33.11.4 H ± ( η , ρ ) = e ± i θ ( f ( η , ρ ) ± i g ( η , ρ ) ) ,
33.11.7 g ( η , ρ ) f ^ ( η , ρ ) f ( η , ρ ) g ^ ( η , ρ ) = 1 .
32: 19.7 Connection Formulas
E ( i k / k ) = ( 1 / k ) E ( k ) ,
Imaginary-Argument Transformation
19.7.8 Π ( ϕ , α 2 , k ) + Π ( ϕ , ω 2 , k ) = F ( ϕ , k ) + c R C ( ( c 1 ) ( c k 2 ) , ( c α 2 ) ( c ω 2 ) ) , α 2 ω 2 = k 2 .
19.7.9 ( k 2 α 2 ) Π ( ϕ , α 2 , k ) + ( k 2 ω 2 ) Π ( ϕ , ω 2 , k ) = k 2 F ( ϕ , k ) α 2 ω 2 c 1 R C ( c ( c k 2 ) , ( c α 2 ) ( c ω 2 ) ) , ( 1 α 2 ) ( 1 ω 2 ) = 1 k 2 .
19.7.10 ( 1 α 2 ) Π ( ϕ , α 2 , k ) + ( 1 ω 2 ) Π ( ϕ , ω 2 , k ) = F ( ϕ , k ) + ( 1 α 2 ω 2 ) c k 2 R C ( c ( c 1 ) , ( c α 2 ) ( c ω 2 ) ) , ( k 2 α 2 ) ( k 2 ω 2 ) = k 2 ( k 2 1 ) .
33: 10.67 Asymptotic Expansions for Large Argument
§10.67 Asymptotic Expansions for Large Argument
§10.67(i) ber ν x , bei ν x , ker ν x , kei ν x , and Derivatives
10.67.1 ker ν x e x / 2 ( π 2 x ) 1 2 k = 0 a k ( ν ) x k cos ( x 2 + ( ν 2 + k 4 + 1 8 ) π ) ,
§10.67(ii) Cross-Products and Sums of Squares in the Case ν = 0
34: 10.61 Definitions and Basic Properties
§10.61(iii) Reflection Formulas for Arguments
In general, Kelvin functions have a branch point at x = 0 and functions with arguments x e ± π i are complex. …
§10.61(iv) Reflection Formulas for Orders
ber 1 2 ( x 2 ) = 2 3 4 π x ( e x cos ( x + π 8 ) e x cos ( x π 8 ) ) ,
bei 1 2 ( x 2 ) = 2 3 4 π x ( e x sin ( x + π 8 ) + e x sin ( x π 8 ) ) .
35: 32.1 Special Notation
Unless otherwise noted, primes indicate derivatives with respect to the argument. …
36: 9.1 Special Notation
k nonnegative integer, except in §9.9(iii).
primes derivatives with respect to argument.
Other notations that have been used are as follows: Ai ( x ) and Bi ( x ) for Ai ( x ) and Bi ( x ) (Jeffreys (1928), later changed to Ai ( x ) and Bi ( x ) ); U ( x ) = π Bi ( x ) , V ( x ) = π Ai ( x ) (Fock (1945)); A ( x ) = 3 1 / 3 π Ai ( 3 1 / 3 x ) (Szegő (1967, §1.81)); e 0 ( x ) = π Hi ( x ) , e ~ 0 ( x ) = π Gi ( x ) (Tumarkin (1959)).
37: 35.2 Laplace Transform
§35.2 Laplace Transform
Definition
where the integration variable 𝐗 ranges over the space 𝛀 . …
Inversion Formula
Convolution Theorem
38: Bibliography Y
  • A. Yu. Yeremin, I. E. Kaporin, and M. K. Kerimov (1985) The calculation of the Riemann zeta function in the complex domain. USSR Comput. Math. and Math. Phys. 25 (2), pp. 111–119.
  • A. Yu. Yeremin, I. E. Kaporin, and M. K. Kerimov (1988) Computation of the derivatives of the Riemann zeta-function in the complex domain. USSR Comput. Math. and Math. Phys. 28 (4), pp. 115–124.
  • T. Yoshida (1995) Computation of Kummer functions U ( a , b , x ) for large argument x by using the τ -method. Trans. Inform. Process. Soc. Japan 36 (10), pp. 2335–2342 (Japanese).
  • 39: 19.6 Special Cases
    Exact values of K ( k ) and E ( k ) for various special values of k are given in Byrd and Friedman (1971, 111.10 and 111.11) and Cooper et al. (2006). …
    §19.6(iii) E ( ϕ , k )
    E ( 0 , k ) = 0 ,
    40: Bibliography G
  • W. Gautschi (1965) Algorithm 259: Legendre functions for arguments larger than one. Comm. ACM 8 (8), pp. 488–492.
  • A. Gervois and H. Navelet (1984) Some integrals involving three Bessel functions when their arguments satisfy the triangle inequalities. J. Math. Phys. 25 (11), pp. 3350–3356.
  • A. Gil and J. Segura (1997) Evaluation of Legendre functions of argument greater than one. Comput. Phys. Comm. 105 (2-3), pp. 273–283.
  • A. Gil, J. Segura, and N. M. Temme (2004a) Algorithm 831: Modified Bessel functions of imaginary order and positive argument. ACM Trans. Math. Software 30 (2), pp. 159–164.
  • E. S. Ginsberg and D. Zaborowski (1975) Algorithm 490: The Dilogarithm function of a real argument [S22]. Comm. ACM 18 (4), pp. 200–202.